Please use this identifier to cite or link to this item: http://sgc.anlis.gob.ar/handle/123456789/2672
DC FieldValueLanguage
dc.contributor.authorScavuzzo, C. M.es
dc.contributor.authorScavuzzo, Juan Manueles
dc.contributor.authorCampero, Micaela Nataliaes
dc.contributor.authorAnegagrie, Melakues
dc.contributor.authorAramendia, Aranzazu Amores
dc.contributor.authorBenito, Agustínes
dc.contributor.authorPeriago, Maria Victoriaes
dc.date.accessioned2025-08-25T14:23:50Z-
dc.date.available2025-08-25T14:23:50Z-
dc.date.issued2022-02-03-
dc.identifier.urihttp://sgc.anlis.gob.ar/handle/123456789/2672-
dc.description.abstractIn the field of landscape epidemiology, the contribution of machine learning (ML) to modeling of epidemiological risk scenarios presents itself as a good alternative. This study aims to break with the ”black box” paradigm that underlies the application of automatic learning techniques by using SHAP to determine the contribution of each variable in ML models applied to geospatial health, using the prevalence of hookworms, intestinal parasites, in Ethiopia, where they are widely distributed; the country bears the third-highest burden of hookworm in Sub-Saharan Africa. XGBoost software was used, a very popular ML model, to fit and analyze the data. The Python SHAP library was used to understand the importance in the trained model, of the variables for predictions. The description of the contribution of these variables on a particular prediction was obtained, using different types of plot methods. The results show that the ML models are superior to the classical statistical models; not only demonstrating similar results but also explaining, by using the SHAP package, the influence and interactions between the variables in the generated models. This analysis provides information to help understand the epidemiological problem presented and provides a tool for similar studieses
dc.language.isoen_USes
dc.relationFundacion Mundo Sanoes
dc.relationInstituto de Salud Carlos IIIes
dc.subjectShapes
dc.subjectShapleyes
dc.subjectMachine learninges
dc.subjectRemote sensinges
dc.subjectHookwormes
dc.subjectEthiopiaes
dc.titleFeature importance: Opening a soil-transmitted helminth machine learning model via SHAPes
dc.typeArtículoes
dc.identifier.doi10.1016/j.idm.2022.01.004-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArtículo-
Appears in Collections:Parasitosis intestinales en Argentina
Files in This Item:
File Description SizeFormat
15. Infect Dis Mod 2022 SHAP STH.pdf3.62 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.