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aims to break with the "black box” paradigm that underlies the application of automatic
learning techniques by using SHAP to determine the contribution of each variable in ML
models applied to geospatial health, using the prevalence of hookworms, intestinal par-
asites, in Ethiopia, where they are widely distributed; the country bears the third-highest
burden of hookworm in Sub-Saharan Africa. XGBoost software was used, a very popular

Ig}e};;\gords. ML model, to fit and analyze the data. The Python SHAP library was used to understand the
Shapley importance in the trained model, of the variables for predictions. The description of the
Machine learning contribution of these variables on a particular prediction was obtained, using different
Remote sensing types of plot methods. The results show that the ML models are superior to the classical
Hookworm statistical models; not only demonstrating similar results but also explaining, by using the
Ethiopia SHAP package, the influence and interactions between the variables in the generated

models. This analysis provides information to help understand the epidemiological
problem presented and provides a tool for similar studies.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Intestinal parasites are a group of cosmopolitan parasites, including protozoa and helminth species, which are both urban
and rural populations. In particular, soil transmitted helminths (STH) contaminate soil through eggs/larvae contained in
human feces; this is why they are more common among people without access to water, hygiene, and/or basic sanitary
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conditions (Campbell et al., 2014; Clasen et al., 2019; O'Reilly et al., 2008; Strunz et al., 2014). STH are among the most
common parasites worldwide; according to the World Health Organization (WHO), 820 million people are infected with
roundworms (Ascaris lumbricoides), 460 million with whipworms (Trichuris trichiura), 440 million with hookworms
(Ancylostoma duodenale and Necator americanus) and over 600 million with the threadworm Strongyloides stercoralis
(Organization, 2020). Thus, STH are on the list of twenty Neglected Tropical Diseases (NTDs) elaborated by the WHO
(Organization, 2010).

These parasites are endemic in tropical and subtropical regions of the world; in particular, they are widely distributed in
Sub-Saharan Africa (SSA), being Ethiopia the country with the third-highest burden of hookworms in the region (Abera et al.,
2013; Amor et al., 2016; Anegagrie et al., 2020; Aramendia et al., 2020; Karagiannis-Voules et al., 2015; Muluneh et al., 2020;
Nute et al., 2018). It is estimated that more than 80 percent of Ethiopia's over 107 million inhabitants live in rural areas that are
endemic for STH (Amor et al., 2016; Anegagrie et al., 2020). Also, the prevalence of hookworm in the country was estimated at
78.7%. The knowledge of the distribution of STH in specific areas and the identification of the most relevant factors which
influence their development and transmission would allow the adaptation of control policies, not only for the detection of the
areas most likely to be affected (and consequently the allocation of resources) but also for the promotion of health, to avoid
post-treatment reinfection (Anegagrie et al., 2020; Mengitsu et al., 2016).

The landscape epidemiology concept is widely used in the field of epidemiological problems related to environmental
conditions (soil, climate, land cover) (Estallo et al., 2016a; Polop et al., 2007; Porcasi et al., 2012; Rotela et al., 2017). In recent
years, these environmental conditions have been available and easily extracted from spatial information (satellite images and
products) (Estallo et al., 2016b), therefore these satellite products may be useful in many areas, one of them being the
construction of models that generate relevant information from environmental data. It is worth remembering that typically
these models are developed on the basis of linear statistical or generalized linear approaches, however, the use of ML for
problem modeling is innovative and highly promising (Weatherhead et al., 1998). ML is an effective empirical family of
methods/algorithms for regression and/or classification of linear and non-linear systems and can involve thousands of var-
iables. It is also ideal for solving problems where although theoretical knowledge is still incomplete, there are some obser-
vations available to train the model. ML is handy for a large number of applications in earth sciences and bio-geophysical
information extraction algorithms (Azamathulla et al., 2012; Brown et al., 2008; Lary et al., 2009; Madadi et al., 2015; Yi &
Prybutok, 1996; Zahabiyoun et al., 2013), but their effective use in applications is relatively new, and its prospects are
extensive (Lary et al., 2016; Lundberg & Lee, 2017a; Pena-Barragdn et al., 2014). Currently, some of the most widely used ML
algorithms are artificial neural networks, support vector machines, decision trees, and random forests (Lary et al., 2016).

In the field of epidemiology, large-scale acquisition of massive field data is not always possible and it is very costly, so the
contribution of artificial intelligence like ML, to the modeling of epidemiological risk scenarios is a good alternative (Scavuzzo
et al., 2020). These kinds of tools are very useful to generate models that can learn from a small amount of data, so that the
effect of predictor variables and their interaction in the model may be understood, enabling the development of a risk
scenario that can be better adapted to the above limitations (Scavuzzo et al., 2020).

A search of the bibliographic base Scopus returns more than 4000 publications that include “epidemiology” and "machine
learning”, 311 of them in 2016. Of this total, 45% correspond to the area of “Sciences of the Earth”, 44% to "Computer Science”
and 35% to “Engineering”, being China, the United States, Italy, and India the countries with the highest scientific production
in the area (Bose et al., 2016; Jafari Goldarag et al., 2016; Wang et al., 2016). It is remarkable to note that a classification criteria
focused in the human health area does not exist; being that the application of spatial epidemiology is known to effectively
contribute to a comprehensive approach to health-related problems, helping to identify the most vulnerable communities
and to design public policies that respond to their particular needs (Souris, 2019). In addition, it is interesting to note that
none of the most important authors that appear in the previous search have worked with Epidemiology, Remote Sensing or
ML.

One of the most important objections to the use of ML is that this methodology is visualized as a black box, where we can
find good models but not understand how they work. To overcome this difficulty, the use of SHapley Additive exPlanation
(SHAP) (Lundberg & Lee, 2017b), represents an important advance in interpreting ML models. This is a state-of-the-art Python
library commonly used in the feature engineering step in ML projects. It uses the classic Shapley value of game theory and its
extension (Lundberg & Lee, 2017b) to link optimal credit allocation to local interpretation, allowing us to explain the results of
ML models. SHAP was developed by Scott Lundberg and Su-In Lee in 2017 and combines several existing methodologies to
create an intuitive and theoretically reliable way for explaining model predictions, by showing how estimations change after
specific variables are removed. The SHAP value quantifies the magnitude and direction (positive or negative) of the feature's
influence on the prediction (Gilbert, 2019; Lundberg & Lee, 2017a; Lundberg et al., 2018, 2020).

The Python SHAP package (https://github.com/slundberg/shap), allows us to calculate SHAP values for a selected model
and it has already been widely used (Lundberg & Lee, 2017b; Lundberg et al., 2018, 2020). Recently, a new class charting tool,
known as decision diagrams, has been added to the SHAP package. This instrument provides a detailed view of the inner
workings of a model, which means that it allows us to understand how models make decisions.

In this study, an automatic learning model was applied to an epidemiological study of hookworm infection in Ethiopia
(Anegagrie et al., 2021). The output of the model is the prediction of the number of individuals per house infected with
hookworm in three rural villages from the Amhara Region. Additionally, in order to aid in the understanding of hookworm
transmission, all the variables that were collected were analyzed using the SHAP package as well, to determine the influence
of each variable on the occurrence of hookworm infection. The software tools and procedures used will be made available so
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as to allow replicability of the model, with the intention of enhancing the application of these techniques for the community
working with similar problems. Therefore, given the necessary passage of hookworm through the soil for its development, the
analysis included environmental, soil, and socioeconomic variables; most of these available from satellite products.

Finally, this study aims to break with the "black box” paradigm that underlies the application of automatic ML techniques,
using the SHAP package to analyze the universe of variables. By consequence, knowing the contribution of each variable in the
final prediction of the models applied to geospatial health problems in particular and landscape epidemiology problems in
general.

2. Materials and methods
2.1. Study area and field data

Ethiopia is a Federal Democratic Republic composed of ten regional states and two administrative cities, divided into 95
zones and 839 districts or woredas. The current study was conducted in the Amhara National Regional State (Fig. 1), in the
northwest of the country, a subtropical region with a rainy season (June to September) and a dry season (February to May)
(Aramendia et al., 2020). The region's capital, Bahir Dar (population approximately 2 50 000), is situated at the southern tip of
Lake Tana, the biggest lake in the country. Within a radius of about 30 km from the city center, there is a central urban area and
surrounding rural areas (Nute et al., 2018). The area of the study is a rural district located at an altitude of 1900 m above sea
level and consists of 9 villages with a population of 11 300 inhabitants (data from the Health Center of the district) (Aramendia
etal., 2020). A first study was conducted in the rural kebele of Zenzelema (ZE), which is located about 20 km east of the city of
Bahir Dar. This kebele consists of nine small villages or gotts. Three of them were randomly selected for the epidemiological
study, Zenzelema (ZE), Mazoria (MA), and Sesaberet (SE).

In all these villages, except for Zenzelema, the houses are far apart from each other and surrounded by crops and forest
areas. On the other hand, Zenzelema is a crowded slightly more urbanized area with the houses located adjacent to each
other. In terms of the geographical area and water source, Zenzelema is located on a main road and the water source is scarce.
Mazoria and Sesaberet can be reached on foot by dirt tracks, while the natural streams and currents are relatively small.

[: ETHIOPIA
L% :

Fig. 1. Villages from Amhara Region (Ethiopia) included in the study. The initials of each village are highlighted in black and white, where MA: Mazoria, ZE:
Zenzelema, and SE: Sesaberet. Map data ©2020 Google, base map obtained through QuickMapServices QGIS plugin - QGIS Geographic Information System. Open
Source Geospatial Foundation Project. http://qgis.osgeo.org.
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Data for this study were collected as part of a larger survey to determine the prevalence of STH, with a specific focus on S.
stercoralis at school (Amor et al., 2016), and community levels (Aramendia et al., 2020). Consequently, an area with high
hookworm prevalence was found (Table 1). The field study was approved by the Amhara National Regional State Health
Bureau Ethics Review Committee Reference number: 1/87/200. All residents over 5 years of age who have lived in the area for
at least three months were invited t participate by providing fecal samples for analysis. Information on the characteristics of
individuals (children and adults) and families were obtained through standardized WHO surveys that were adapted to the
Ethiopian culture and translated into Ambharic. All participants were asked to complete an individual personal questionnaire
and the head of the household was also asked to complete a household questionnaire (Amor et al., 2016; Aramendia et al.,
2020).

Fig. 2 shows the geolocation of infected individuals for each village included in the study, data corresponds to field data
collected in previous studies (Aramendia et al., 2020; Amor et al., 2016).

2.2. Variables included in the study

Complete socioeconomic data were available only from the villages of SE, MA, and ZE, thus including 368 individuals and
89 households (Anegagrie et al.). Households were used as data-points to model the risk of infection (number of hookworm
infected individuals per household). The variables related to this study involve socioeconomic and environmental parameters,
as well as variables related to hookworm infection. It is important to clarify that the dataset used of this study is the same as
the one used in a previous study (Anegagrie et al., 2021) and thus the specific data is not replicated herein.

2.3. Modeling

The dataset mentioned above was used to model the risk of infection (number of hookworm infected individuals per
household), taking as inputs the value of environmental variables obtained from satellites and the socioeconomic variables
that were collected in the field.

Likewise, the cross-validation technique was used to compare the performance of both models; which ran with 5 splits
and a ratio of 80-20 for the separation of the data in training and validation. Mean Square Error (MSE) was used as the error
metric at cross-validation step, therefore the mean score represents the average of errors from each instance of the dataset.

Soft hyperparameters tuning was used for the selected model by using the Cross-Validation Score to select the best
hyperparameter combination. This way, we adjust the "maximum depth”, used to control over-fitting, as more depth will
allow the model to learn very specific relationships for a particular sample. Increasing this value will make the model more
complex and more likely to be over-fit. In addition, for the regularization terms in the weights we adjust the alpha and lambda
parameters, considering that the increase of this value will make the model more conservative, all from the booster set. For
other settings, default settings were used.

For the analysis of the relative importance of the variables within the model, the Python SHAP library is available
(Lundberg et al., 2020). To facilitate the use and integration with SHAP, the model was trained using the Scikit-Learn Wrapper
interface provided by XGboost. A baseline XGBoost model was applied to analyze all the variables with the exception of the
variable number of people per house, which was erased in order to avoid masking the behavior and interactions of the rest of
the variables (environment, soil, and socioeconomic) (Chen & Guestrin, 2016a). Specifically, the contribution of the different
variables in the prediction of the model is calculated through the SHAP values, an example is shown in Fig. 3.

To obtain the description of the contribution of the variables on a particular prediction, decision plots, which offer a
detailed view of a model's inner workings, were used; these show a large number of feature effects clearly visualized through
multi output predictions, displaying the cumulative effect of interactions and exploring feature effects for a range of feature
values (Lundberg et al., 2018). In addition to the above-mentioned chart, the data were analyzed through a decision plot that
shows how complex models arrive at their predictions (i.e. how models make decisions), therefore, it shows the important
features involved in a model's output. A decision plot can be more helpful than a force plot when there are a large number of
significant features involved. Furthermore, the data were analyzed using dependence plots that allow having information
about the relationships or dependencies between the variables in the context of the developed model. Finally, an absolute
summary plot and a summary plot were used to perform a global analysis of the impact of each of the variables on the model's
prediction. This can be observed both point by point and in terms of its absolute value at the following site: (https://github.
com/juansca/geohelmintos-modeling).

Table 1
Infection status of sampled people from the villages included in this study: Mazoria, Sesaberet and Zenzelema (Region of Amhara, Ethiopia).
Infected people (n) Prevalence (perc) Inf. people per house (mean)
Zenzelema (n = 148) 95 64.2 23
Sesaberet (n = 193) 151 78.2 2.7
Mazoria (n = 152) 121 79.6 2.5

265


https://github.com/juansca/geohelmintos-modeling
https://github.com/juansca/geohelmintos-modeling

CM. Scavuzzo, .M. Scavuzzo, M.N. Campero et al. Infectious Disease Modelling 7 (2022) 262—276

oy Number of infected per household
1 ) operson

() 1person
) 2 people
© 3 people
@ 4 people
. 2| @ 5people
¢,

Y @ 6 people
@ 8people

Fig. 2. Spatial distribution of hookworm infection in the villages from Amhara Region (Ethiopia) included in the study. The different colored dots represent the
number of infected individuals per household. The initials of each village are highlighted in black and white, where MA: Mazoria, ZE: Zenzelema, and SE:
Sesaberet. Map data ©2020 Google, base map obtained through QuickMapServices QGIS plugin - QGIS Geographic Information System. Open Source Geospatial
Foundation Project. http://qgis.osgeo.org.
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Fig. 3. Diagrammatic representation of SHAP. Figure adapted from Lundberg et al. (2020). From local explanations to global understanding with explainable Al for
trees. Nature machine intelligence, 2(1), 56—67. The values and variables shown in this figure were taken from the force plot presented in Fig. 6.

3. Results
3.1. XGBoost model

Based on the concepts of the classical statistics, the residuals of our initial XGBoost model results were examined. It is
important to remember that in classical models a normal and cero centered distribution is expected, which can be expressed
with a histogram. In this regard, as a complementary validation of the model's performance to fit the analyzed dataset, a
histogram of the residuals of the XGBoost baseline model's output was performed; obtaining as a result a histogram with
normal distribution centered at zero.
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Also in order to evaluate the aforementioned model, plots were made to show the predictions of the model in comparison
to the real infection values, both in the training set and in the test set. It is relevant to note that the model was given only the
training target data. In other words, the model did not receive the test's data points before the prediction. In the training
routine the model predicts prudently to take care of its performance metrics and minimize the error, so it presents point
estimates dispersed in a relatively small variance range around the mean. In this way the model achieves better efficiency in
estimating the predicted values in the test routine, in which it is validated with a portion of the data set with which it had no
contact in the training routine. Also we observed that the distance between the predicted and actual values decreases
considerably, obtaining an acceptable metric.

To determine contribution of the variables Fig. 4 represents decision plot, where a straight vertical line marks the model's
base value while the colored line is the prediction. Feature values are printed next to the prediction line for reference. Starting
at the bottom of the plot, the prediction line shows how the SHAP values accumulate from the base value to arrive at the
model's final score at the top of the plot. On the x-axis at the bottom of the plot, the average prediction of the model is less
than 2.6 hookworm infected individuals per house, while on the y-axis, the variables are ordered from highest to lowest
depending on their influence on the prediction of the model. According to this decision plot, lack of electricity is the most
important variable followed by certain soil characteristics (i.e. Soil Organic Carbon Content - ORCDRC, Bare Soil Index - BSI,
etc.). If the house increases the average value of the final prediction of the model, the line is red. On the contrary, if it decreases
the average value of the final prediction, the line is blue. In summary, each line represents an observation or house included in
the study, and the behavior of the entire set as it descends, ends up throwing the average of the prediction which in total is
that of approximately 2.5 hookworm infected individuals per household.

Fig. 5 shows in more detail the multiple interactions of each variable within the proposed model when an average
household from each village is taken and analyzed individually. The average household from each village was chosen

Electricit
ri_orcd_n
BSIn
Clyp_n
MSI_n
Phikecl_n
Ocstha_n
BLDFIE_n
NDEBI_n
Drinking_1
Drinking w
Phihox_n
Water cook

Hand washi

Domestic animals
SLTppt_n

Radio

Toilet

ri_bfd

Bath

22 24 26 28 3.0
Model output value

Fig. 4. Decision plot of the complete data set. The y-axis represents the variables used in the study, which refer to: Electricit = Presence or absence of electricity;
ri_orcd_n = Constructed risk from soil organic carbon content; BSI_n = Bare Soil Index; Clyp_n = Weight percentage of the clay particles; MSI_n = Moisture
Stress Index; Phikcl_n = pH index measured in KCl solution; Ocstha_n = Soil organic carbon stock; BLDFIE_n = Bulk density; NDBI_n = Normalized Difference
Builtup; Drinking_1 = Source of drinking water during the rainy season; Drinking w = Source of drinking water during drought periods; Phihox_n = pH index
measured in water solution; Water cook = Source of water used for cooking; Hand washi = Hand washing, source of water used for hand washing; Domestic
animals = Presence or absence of domestic animals; SLTppt_n = Weight percentage of the silt particles; Radio = Presence or absence of radio; Toilet = Type of
bath; ri_bfd = Constructed risk from bulk density; Bath = Origin of water used in the bath. The x-axis represents the number of hookworm infected individuals
per household which is the output value of the model.
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Fig. 5. Decision plot for individual and typical households. These plots refer to the prediction made by the model for each particular observation, thus Fig. 5a
refers to an average house in the village of Zenzelema, Fig. 5b refers to an average house in the village of Sesaberet, and Fig. 5c refers to an average house in the
village of Mazoria; for the three cases mentioned above the median number of cases per village was taken into account. On the other hand, Fig. 5d and e refer to
those houses that had the minimum and the maximum number of hookworm infected persons per house, both of these located in the village of Mazoria.

higher 2 lower
base value model output value
2.469 2. 519 2. 569 2] 619 2. 669 2.70 2. 719 2. 769 2819 2.869

Water cook =0 Ctyp n= 0333 ri_ored_n = 0.437 Electricit =0 MSI_n= 0381 Ocsiha n= 0106 Phihox_n =0.236 | BSI_n = 0.555

Fig. 6. Force plot of a typical household of Mazoria where the variables that increase the prediction of the model the most are shown in red and those that reduce
the prediction of the model the most in blue. The numbers in the black line represent the number of hookworm infected individuals per household according to
the base value of the training set (2.57) and the output value of the model's prediction (2.70). Variables: presence or absence of electricity;
ri_orcd_n = Constructed risk from soil organic carbon content; Clyp_n = Weight percentage of the clay particles; MSI_n = Moisture Stress Index; Ocstha_n = Soil
organic carbon stock; Phihox_n = pH index measured in water solution.

considering the median number of infected individuals per household. For example, in the case of the electricity variable, a
contrasting difference can be observed between a house in the village of Zenzelema (Fig. 5a) that is located in the main road,
where electricity decreases the model's prediction, and a house in the village of Mazoria (Fig. 5¢); a much more remote area,
where the same variable increases the model's prediction. Moreover, by isolating the analysis on a single observation or
typical house from a particular village and comparing the different villages, the order of importance in the priority of the most
influential variables in the average of the model's prediction can vary. For example, for the house observed in Sesaberet
(Fig. 5b), the variable of drinking water in the rainy season was taken as the most influential variable in the model instead of
the electricity variable. Nonetheless, regardless of the importance of each of the variables, in all these plots, the number of
hookworm infected individuals per household remains between 2.5 and 2.6.

In the following force plots, a typical house in each village containing the average number of hookworm-infected in-
dividuals per household is represented. Thus, it can be seen in each graph, that for the three cases a base value of 2.5 means
that per house there is an average of 2.5 infected individuals; and on the basis of that value the model calculates a different
output value for each village. In this type of graphs it can be seen a risk explanation bar that shows red features that push the
risk higher (pointing to the right) and blue features that push the risk lower (pointing to the other side), and so depending on
how long the bar of each variable is the power of influence it has.

The force plot for each of these houses is shown in Figs. 6 and 7. In Fig. 6, the “base value” for Mazoria (corresponding to the
model's average prediction of the training set) is 2.57 hookworm infected individuals per house; while the "output value”
(model's prediction) is 2.70. The absence of electricity is also observed as the variable that most increases the prediction of the
model due to the bar extension referring to this variable, followed by variables that characterize the organic carbon content
(ri_orcd_n) and clay content in the soil (Clyp_n). On the other hand, the moisture stress index (MSI) is the variable that
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Fig. 7. Force plot of a typical household of Zenzelema where the variables that increase the prediction of the model the most are shown in red and those that
reduce the prediction of the model the most in blue. The numbers in the black line represent the number of hookworm infected individuals per household
according to the base value of the training set (2.57) and the output value of the model's prediction (2.12). Variables: Electricit = Presence or absence of
electricity; Clyp_n = Weight percentage of the clay particles; MSI_n = Moisture Stress Index; Phikcl_n = pH index measured in KCI solution; Drinking w = Source
of drinking water during drought periods.

reduces most the model's prediction, followed by the organic carbon stock (Ocstha_n) and the soil pH index measured in
water solution (Phihox_n).

Although the force plot is not shown for the village of Sesaberet (due to the similarity of intervening variables), it is
relevant to note that the value predicted by the model is 2.40 hookworm-infected individuals per house. Like the village of
Mazoria, the absence of electricity is the variable that most increases the prediction of the model, followed by the variables
that characterize the organic carbon content (Ocstha_n) and the soil bulk density (BLDFIE). However, in this village, the
consumption of water from the pipes during the rainy season (Drinking_1) is the variable that most reduces the prediction of
the model, followed by the organic carbon content in the soil (ri_orcd_n), the use of water from pipes for hand washing (Hand
washi), water stress index (MSI), clay content (Clyp_n) and soil pH index measured in KCl (potassium chloride) solution
(Phikcl_n).

Finally, the predicted values for Zenzelema (Fig. 7) show that the average prediction of the model on the training set is 2.56
hookworm infected individuals per house; while the predicted value of the model is 2.12. Again, the presence of electricity is
the variable that reduces most the prediction of the model, followed by variables that characterize water stress (MSI), clay
(Clyp_n) and soil ph index measured in KCI solution (Phikcl_n), and finally the consumption of well water for drinking in the
dry season (Drinking w). With respect to the characterization of the villages previously carried out, it should be noted that the
variables present in Mazoria and Sesaberet, which increase the number of hookworm infected individuals per house, are
weighted so low in Zenzelema, that the force plot does not manage to categorize them and therefore they are not considered
in the analysis (Fig. 7).

In the dependence plot shown below (Fig. 8), the vertical axis represents the SHAP value (or importance of the variable)
while the horizontal axis shows the actual value of the variable. Also, in these graphs, each point is presented with the color
palette on the right side of the graph which represents the scale of values of the second variable at each point (not its SHAPS).
As observed in Fig. 8, the blue points are those in which the NDVI took low values while the red points are those in which the
NDVI took high values. From the same figure, it can be interpreted that when the NDVI is low, the influence of the presence of
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Fig. 8. Dependence plot for SHAP values of electricity and the relation with NDVI. The vertical axis represents the SHAP value (or importance of the variable)
while the horizontal axis shows the actual value of the variable. Each point is presented with the color palette detailed for NDVI on the right side of the graph.
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Fig. 9. Absolut summary plot of the complete dataset, where the average absolute value of the SHAP values for each variable is taken in order to obtain a bar chart
as a function of the contribution of each variable to the prediction of the model. The variables are ordered from most (top) to least (bottom) important. The y-axis
represents the variables used in the study, which refer to: Electricit = Presence or absence of electricity; ri_orcd_n = Constructed risk from soil organic carbon
content; BSI_n = Bare Soil Index; Clyp_n = Weight percentage of the clay particles; MSI_n = Moisture Stress Index; Phikcl_n = pH index measured in KCl so-
lution; Ocstha_n = Soil organic carbon stock; BLDFIE_n = Bulk density; NDBI_n = Normalized Difference Builtup; Drinking_1 = Source of drinking water during
the rainy season; Drinking w = Source of drinking water during drought periods; Phihox_n = pH index measured in water solution; Water cook = Source of water
used for cooking; Hand washi = Hand washing, source of water used for hand washing; Domestic animals = Presence or absence of domestic animals;
SLTppt_n = Weight percentage of the silt particles; Radio = Presence or absence of radio; Toilet = Type of bath; ri_bfd = Constructed risk from bulk density;
Bath = Origin of water used in the bath. The x-axis represents the number of hookworm infected individuals per household which is the output value of the
model.

electricity on the model decreases even more. Otherwise, at high values of the NDVI, the influence of the absence of electricity
in the model increases the prediction.

The absolute summary plot is presented in Fig. 9. In this figure, the average absolute value of the SHAP values for each
variable is taken in order to obtain a bar chart as a function of the contribution of each variable to the prediction of the model.
This way, the relative importance of each variable in contributing to the prediction of the number of hookworm infected
individuals per house is observed. From this plot, it can be inferred that the most influential variables in the model were
electricity, the amount of soil carbon (n_ocrd_n), and the index of bare soil (BSI), from greater to lesser presence, respectively.

Finally, Fig. 10 presents a summary plot in which the contribution of each variable to the model is displayed taking into
account all of the values of each of the variables. This figure includes all the variables entered into the model, where the
magnitude is represented by the colored line on the right. The horizontal axis represents the SHAP values of each of the
variables by which the model predicts the number of hookworm infected individuals per house. Following the previous plot,
the most influential variables in the model are shown. The interpretation of the summary plot shows that the presence of the
variable electricity (higher values visible in red on the horizontal bar) implies a decrease in the predicted number of infected
individuals per house (expressed on the scale at the bottom of the figure); conversely, lack of electricity (visible in blue) is
associated with an increase in the predicted value of the number of hookworm infected individuals per house. The same
analysis can be applied to the rest of the variables. Moreover, in the case of the soil variables, the values appear more het-
erogeneous due to their continuous nature (more violet instead of blue and red) unlike electricity which is a dichotomous
variable and polarizes its colors (only blue and red).

It is important to remark here that the aim of this study is not to implement the best predictive model but to understand
how the variables interact within the ML models through the SHAP package. In order to achieve this, a baseline XGBoost
model was applied and analyzed up to here, including all the variables with the exception of the number of people per house.
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Fig.10. Summary plot of the complete dataset. The horizontal axis represents the SHAP values of each of the variables by which the model predicts the number of
hookworm infected individuals per household while the vertical axis lists all of the variables used in the study. The y-axis represents the variables used in the
study, which refer to: Electricit = Presence or absence of electricity; ri_orcd_n = Constructed risk from soil organic carbon content; BSI_n = Bare Soil Index;
Clyp_n = Weight percentage of the clay particles; MSI_n = Moisture Stress Index; Phikcl_n = pH index measured in KCl solution; Ocstha_n = Soil organic carbon
stock; BLDFIE_n = Bulk density; NDBI_n = Normalized Difference Builtup; Drinking_1 = Source of drinking water during the rainy season; Drinking w = Source of
drinking water during drought periods; Phihox_n = pH index measured in water solution; Water cook = Source of water used for cooking; Hand washi = Hand
washing, source of water used for hand washing; Domestic animals = Presence or absence of domestic animals; SLTppt_n = Weight percentage of the silt
particles; Radio = Presence or absence of radio; Toilet = Type of bath; ri_bfd = Constructed risk from bulk density; Bath = Origin of water used in the bath. The x-
axis represents the number of hookworm infected individuals per household which is the output value of the model.

The main reason is that this variable appears as the most important one; which responds to the epidemiology of hookworm
infection, as previously documented (Milano et al., 2007; Parija et al., 2017; Chen & Guestrin, 2016b,a; Romero-Sandoval et al.,
2017). Therefore, in order to avoid masking the behavior and interactions of the rest of the variables (environment, soil, and
socioeconomic), this variable was removed from the analysis for this first version of the model.

The performance metrics, for both training and test data subsets are presented in Table 2: the linear regression model
applied by Anegagrie et al. (using the same dataset) and two variants of the XGBoost model; the baseline model, and a final
version including only the most important variables that were identified in the baseline analysis (number of people per
household, electricity, risk of soil organic carbon content, the index of bare soil and the moisture stress index). The final
version of the ML model presents better performance metrics (R? and Mean Square Error -MSE-) both for training and testing.

Table 2

Performance metrics of the different models used. For the original data a linear multiple regression model was used (Anegagrie et al., 2021), and then the
baseline (which included all the variables except the number of people per house) and final XGBoost model (including the top five variables and the number
of people per household) for the current study. In adition: R? train refers to R-squared of the training data set, MSE train refers to the Mean Square Error of
the test data set, R? test refers to R-squared of the training data set, MSE test refers to the Mean Square Error of the test data set.

R? train MSE train R? test MSE test
Linear Multiple regression model 0.76 0.68 0.71 0.64
Baseline XGBoost model 0.37 1.72 -0.10 1.94
Final XGBoost model 0.99 0.01 0.79 0.36
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R2 train: R-squared of the training data set; MSE train: Mean Square Error of the training data set, R2 test: R-squared of the
training data set; MSE test: Mean Square Error of the training data set.

Finally, Fig. 11 shows the true and predicted values of the number of hookworm infected individuals per house when using
the final version of the XGboost model.

These last results validate the purpose of the "SHAP” package for an adequate analysis of variables (importance, de-
pendences, etc.), once this process has been carried out by means of the SHAP method, a model containing the most influ-
ential variables can be obtained using a small dataset, which present very high-performance metrics in comparison to the
linear model originally performed with the field data (Anegagrie et al., 2021).

4. Discussion

It is widely known that disease modeling is usually developed on the basis of linear or generalized linear statistical ap-
proaches; however, the use of ML for modeling problems, in general and in this work in particular, is innovative and very
promising. As shown herein, ML tools were and are useful for solving problems where limited data are available to train the
model, a very common situation in the field of epidemiology. This is why, in a global context of growing needs and limited
resources, open data science and ML techniques play a key role in contributing to the generation of research products and the
promotion of decision making focused on local health priorities. In this work, a public health problem was addressed using
these novel tools in a Region of Ethiopia, where the prevalence of STH infection is on the list of Neglected Tropical Diseases
(NTDs) elaborated by the WHO (Organization, 2010); thus evidencing the high potential of approaches with this
methodology.

ML tools are increasingly used in many fields to model regression and/or classification of data, with special emphasis on
nonlinear systems that involve a high number of variables. In the area of epidemiology, it is essential to optimize resources for
data collection in the field. This is why ML models applied to health are of great importance to generate efficient models that
can learn from small datasets. This promotes the adoption of these technologies in entire communities facing similar
problems (Bates et al., 2014; Gebreyes et al., 2014; Han et al., 2015; Roski et al., 2014; Wiens & Shenoy, 2018).

In this study, two ML models with applications in epidemiology are presented, using SHAP analysis techniques to examine
the influence of the predictor variables and their interactions in the proposed model. The SHAP analyses helped to better
understand the behavior of the predictor variables within the model, and thus enable developments that best fit the dataset
in question. The predicted SHAP values for each variable allowed us to visualize and weigh those that were most influential,
and, through this, to determine the nature of the variable and decide on future courses of action. It should also be noted that
the variables in these ML models modify both their weight and their sign throughout the simulated data set.

The aim of the current study was to break the "black box” paradigm using ML technology, which uses SHAP to determine
the contribution of each variable in the ML model applied to geospatial health. On the other hand, as described in the result
section, the construction of a histogram of the residuals or errors is in accordance with that observed in other studies (Emsley
et al.,, 2010; Mayer & Butler, 1993; Baddeley et al., 2005) where the use of this type of plots of residuals is proposed as an
adequate tool for validation of a model. Although the results of the baseline XGBoost model are not fully disclosed, the
number of individuals per household was the most weighted variable in the prediction, as in previous studies, where it was
shown that hookworm infection seems to be determined by the number of individuals per household, since infection tends to
be more prevalent when there's overcrowding (Milano et al., 2007; Parija et al., 2017; Chen & Guestrin, 2016b,a; Romero-
Sandoval et al., 2017). However, this variable was excluded from the model in order to observe the interactions of the rest
of the variables in greater detail.

Final XGBoost train data set Final XGBoost test data set

o] . . 3 H s . of . . B

E46 A6 MA04 €29 MA21 o7 %51 ZE08 55 A3

Fig. 11. Observed values vs. predicted values plot on the TRAIN vs TEST of XGBoost final model. It can be observed in the left panel the plot corresponding to the
train set, and in the right panel the plot for the test. For both graphs, the blue dots represents the real number of hookworm infected individuals per household,
and orange plots shows model's prediction of the number of hookworm infected individuals per household.
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As for the parameters and their configuration, we can say that Booster, General and Task are the three main parameter sets
of XGBoost. Although XGBoost has many parameters and different combinations of parameters obtain different evaluation
scores, in this work it has shown excellent results in all aspects. It should be clarified that in this manuscript only some
parameters of the Booster set were modified, being that in most cases, Booster is used to define the details of the boosting
tree. Thus, the definition of each tree can be precise; and we do not need to adjust all the parameters (Chen et al., 2015; Chen
and Guestrin, 20164, 2016b; Jiang et al., 2019; Scavuzzo et al., 2018, 2020).

In the SHAP methods decision plot, summary and absolute summary plots, the most influential variables in the prediction
of the model were electricity, the risk constructed from the ORCD (Soil organic carbon content), the BSI (Bare Soil Index), the
CLYP (Weight percentage of the clay particles), and the MSI (Moisture Stress Index); this is in agreement with the results of
the model applied in the work of Anegagrie et al. where it is specified that the same variables were statistically significant. For
the village of Sesaberet, the variables "drinking_1: 2” (origin of water for consumption during the rainy season: pipeline) and
“hand wash: 2” (origin of water used for handwashing: pipeline) were the variables that most decreased the prediction
together with a soil variable, being the absence of electricity the one that most increased it (Fig. 5b). The same results were
obtained in the force plot explained for the village of Sesaberet, which also shows a similar distribution and interaction. This is
in agreement with previous studies (Anegagrie et al., 2021; Morales-Espinoza et al., 2003; Periago et al., 2018; Chen &
Guestrin, 2016a,b; Molla & Mamo, 2018; Tekalign et al., 2019; Anunobi et al., 2019; Grimes et al., 2016; Loukouri et al.,
2019; Muluneh et al., 2020; Oswald et al., 2017). Moreover, for the village of Mazoria, the force plot method applied
(Fig. 6) showed that low Moisture Stress Index (MSI) decreased the prediction, the absence of electricity increased the number
of predicted infected individuals, and this village also presented a lower NDBI and a higher NDVI (Anegagrie et al., 2021). This
agrees with what is shown in the dependence plot (Fig. 8), where electricity and vegetation cover are intimately related, as
also observed in previous studies (Alvarez Di Fino et al., 2020; Chaiyos et al., 2018; Knopp et al., 2008; Mudenda et al., 2012;
Oluwole et al., 2015; Ovutor et al., 2017; Sedionoto & Anamnart, 2018).

On the other hand, Zenzelema differs in its characteristics in comparison to the other two villages included in the study as
already described above and in the study conducted by Anegagrie et al., with the lowest number of hookworm infected
individuals. Based on results shown in Fig. 5a and the force plot (Fig. 7), the presence of electricity interacts with a lower MSI,
decreasing the prediction of the model. This is consistent with our results, where we can see that the “output value” in the
force plot or final model prediction is the lowest compared to the other two villages.

The SHAP methods applied in this study showed a good approximation to the real situation of each village. This package
allowed us to explain why the model predicts specific risks, allowing us to plan appropriate evidence-based interventions. It
should be clarified that in each graph obtained, the most important characteristics influencing the risk are shown for quick
reference. Each group of characteristics is ranked according to the magnitude of their impact and the characteristics with the
greatest influence on the variable response. We not only provide the model with the characteristics we consider important,
but we allow the model to use the characteristics it chooses. This implies that the package may encounter characteristics that
it was not expected to predict in the first place (for this purpose, for some of these characteristics, it is useful to label them
with indicators of their relationship to risk) (Lundberg & Lee, 2017a; Lundberg et al., 2018, 2020).

This was useful to understand the epidemiological problem presented, given that sometimes it is not feasible to obtain
massive training data on a large scale, it is important to generate models that can learn from small volumes of data. It is also
important to mention that the routines and techniques used are described and made available to others who may be
interested in using this methodology in the github repository, including the source codes of the main routines. Therefore,
based on the results obtained here, we can state that ML models are superior to classical statistical models, not only
demonstrating similar results but also explaining the influence and interactions between variables within the generated
models.

5. Conclusion

The SHAP methods used in this study unraveled the black box paradigm underlying the application of ML techniques. The
figures revealed the interactions of all the variables with each other and how this relationship is reflected in the model for
proper analysis of the variables to arrive at a better model with higher performance metrics, which allowed concluding that
the variables of electricity, soil and environment are the most influential in modeling hookworm infected per household.

The study of variables obtained from satellite information was crucial in modeling in general and hookworm etiology in
particular, therefore is important to recognize that satellital data is available in open access. We believe that we have pre-
sented an ML model analysis methodology that gives the possibility to explore the potential of remote sensing in the area of
epidemiology from a health sciences perspective.

Regarding the limitations of the study, first of all we would like to mention the sample size of the dataset used, which
could be considered to have a small N to be able to take full advantage of the statistical power of these ML tools. In any case, it
was possible to complete the proposed routines without major inconveniences. However, it should be noted that with further
training input, the model would improve its performance metrics.

Another limitation of the study is to recognize that these routines were adjusted and trained for a defined and particular
area and contextual reality, which makes it necessary to consider that each model will be trained with social and cultural
dimensions particular to the population under study, and that it cannot be extrapolated to other populations that do not share
these dimensions.
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