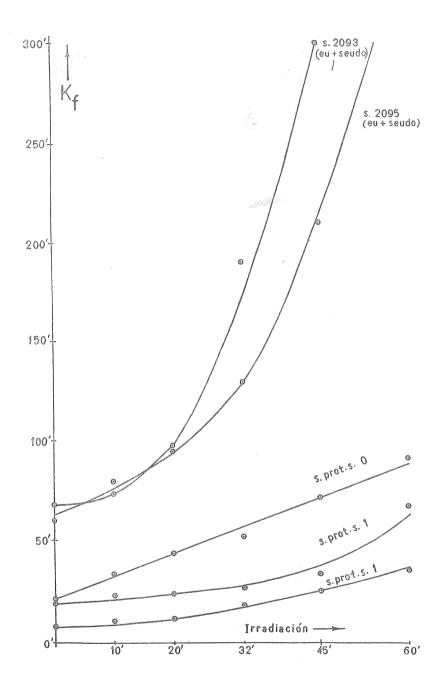
Irradiación ultravioleta de antitoxina, toxina y toxoide diftéricos

(Con un gráfico)

Por OSVALDO M. REPETTO

Los cuerpos de interés inmunológico, sometidos a la acción de las radiaciones provenientes de la lámpara de mercurio, sufren variaciones de sus propiedades características, las cuales fueron estudiadas por diversos autores. Así, Bisceglie (1927) encuentra una notable atenuación de las toxinas diftérica y tetánica; experimentando en sueros antidiftéricos, Hartley (1927) y Bentivoglio (1931) no observan reales modificaciones del valor primitivo de unidades antitóxicas. Entre nosotros, Modern (1936) obtiene la pérdida del poder de floculación de las toxina y antitoxina diftéricas, disminuyendo su toxicidad la primera y sin sufrir mayor variación de las unidades antitóxicas la segunda. El toxoide no experimentaba variación de su poder de floculación; estas irradiaciones fueron hechas durante un tiempo largo.

Nosotros estudiamos las variaciones producidas por la irradiación. pero con exposiciones de menor duración; utilizamos como fuente la lámpara original « Hanau » sin filtro, colocando la muestra en un cristalizador a 20 cm de distancia de aquélla. El calentamiento se evitaba colocando el cristalizador dentro de otro mayor con agua, empleando como contralor un termómetro de máxima, el cual nunca pasó de los 37°. A intervalos se sacaban muestras, reponiéndose el agua evaporada, antes de obtener cada muestra y sobre ella medíamos según Ramon las unidades floculantes y tiempos de floculación y según Ehrlich las unidades antitóxicas. El máximo de exposición fué de 60 minutos.


Se irradiaron para comparar, los sueros obtenidos por el método de concentración con sulfato sódico y los purificados por proteolisis pépsica, según el método de Parfentiev modificado por Modern y Ruff. Se diluían previamente al doble, exponiéndolos a la irradiación y sacando 1 c. c. a los 10, 20, 32, 45 y 60 minutos, que se

	(eu + seudoglobul.)							
Tiempo irradiación	U. F.	U. A.	Kf	vivo				
0′	2000	2000	68′	1				
10′	1900	2000	73′	1,05				
20′	1900	2000	98′	1,05				
32′	1800	1700	190′	0,94				
45′	1600	1500	300′	0,93				
60′	no fl.	1500 >	> 500 ′					

Suero 2093

CUADRO 1

Suero 2095 (eu + seudoglobul.)			Suero proteol.				Suero proteol.		Suero proteol. Serie 1		
U. F.	U. A.	Kf	vivo vitro	U. F.	U. A.	Kf	vivo	U. F.	Kf	U. F.	Kf
2000	1800	60′	0,90	1600	1600	22′	1	1800	20′	1800	8′
2000	1800	80′	0,90	1600	1500	35′	0,93	1800	24'	1700	11′
2000	1700	95′	0,85	1500	1300	45′	0,86	1700	25′	1700	12′
1800	1700	130′	0,94	1400	1300	54′	0,93	1600	28′	1500	19′
1800	1600	210′	0,88	1300	1300	74′	1,00	1400	35′	1500	26′
1600	1400	330′	0,87	1300	1100	94′	0,81	1300	70′	1200	37′

llevaban a 20 c. c. con solución fisiológica para hacer las medidas. Los resultados se resumen en el cuadro I.

Como se ve, el aumento de Kf es un hecho general, siendo mayor para los sueros comunes, los cuales presentan un valor inicial de cerca de 3 veces el correspondiente a los proteolizados. La disminución de unidades es muy pequeña durante los primeros intervalos, haciéndose mayor al prolongar la exposición, produciéndose probablemente en estas últimas condiciones, un principio de desnaturalización del suero, ya que éste toma un ligero oscurecimiento hacia el final de la irradiación. La relación vivo no presenta material de la irradiación.

hacia el final de la irradiación. La relación $\frac{\text{vivo}}{\text{vitro}}$ no presenta mayores variaciones.

Las variaciones de Kf para los dos tipos de sueros se aprecian mejor en el gráfico.

Procediendo en la misma forma se irradió la toxina y toxoide diftéricos; para la toxina no se midió por Ehrlich. Los resultados se encuentran en el cuadro que sigue:

CUADRO II

TOXINA					Тоходе					
Irradiación	Lî	Kf	Lf	Kf	Lf	Kf	Lf	Kf	Lf	Kf
0' 10' 20' 32' 45'	16 16 16 16	8' 13' 25' 28'	20 20 20 20	5' 6' 8' 9'	17 17 17 17	23' 30' 35' 35'	330 330 330 280	20' 26' 30' 46'	370 360 34 5 310	21′ 23′ 40′ 53′
40' 60'	16 16	30′ 37′	20 20	10' 13'	17 17	38′ 42′	250 220	80′ 95′		

Para la toxina y el toxoide sin concentrar, se observa una constanca en las Lf, en cambio en los toxoides concentrados, ese valor sufre una disminución lenta. En todos los casos aumenta Kf con el tiempo de irradiación.

BIBLIOGRAFIA

BISCEGLIE (1927), Giornale di Bact. ed Inmun., Nº 3.

Bentivoglio (1931), Bull. e Atti Accad. Med. di Roma, 57, 5-11. Enero.

HARTLEY, Atti XII Congreso Ital. Pediatria (Napoli 1927) e Pathologica (1928).

Modern (1936), Rev. Inst. Bacteriológico., Vol. VII, Nº 4, 618-21, Julio, y Rev. Soc. Arg. Biología, Vol. XII, Nº 8, 404-7. Noviembre.

Modern y Ruff (1939), Rev. Inst. Bacteriológico. Vol. IX, Nº 2, 197-215. Diciembre.