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ARTICLE INFO ABSTRACT

Keywords: The emergence of antimicrobial resistance in Acinetobacter species poses a significant clinical challenge,
Ceﬁderocol-resistance particularly in non-baumannii species, which are often overlooked in healthcare settings. In this study, we
Acinetobacter characterized two Acinetobacter clinical isolates, AMA204 and AMA207—identified as A. junii and

Non-baumannii

. . . A. haemolyticus, respectively—which exhibit uncommon resistance mechanisms that enable survival in the
Antimicrobial resistance

Phylogenomics presence of cefiderocol, regardless of their initial minimum inhibitory concentration values. Whole-genome

Acinetobacter junii sequencing and comparative genomic analyses were performed to investigate the genetic determinants associ-

Acinetobacter haemolyticus ated with their resistance profiles. Antimicrobial susceptibility testing confirmed multidrug resistance, with both
isolates harboring key p-lactamase genes, including blapxa-ss, and blaypym.1 in AMA204, and blapxa.ss and blapgg.2
in AMA207. Phylogenomic analyses revealed genetic relatedness to geographically diverse isolates, suggesting
possible evolutionary trends and transmission dynamics. Additionally, iron uptake systems were analysed,
highlighting potential mechanisms contributing to cefiderocol resistance together with the presence of listed
p-lactamase. This study underscores the clinical relevance of non-baumannii Acinetobacter species in antimicrobial
resistance and emphasizes the need for continued surveillance and novel therapeutic strategies to combat these
emerging threats.

1. Introduction ://lpsn.dsmz.de/genus/acinetobacter). Among these, Acinetobacter
junii and A. haemolyticus are known to cause human infections. A. junii

Acinetobacter, a genus within the Moraxellaceae family of Gammap- has been identified as the causative agent of various clinical conditions
roteobacteria, encompasses approximately a hundred species (https such as bacteremia, septicemia, corneal ulcer, urinary tract infection,
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necrotizing fasciitis, cellulitis, cholangitis, peritonitis (Aguilar-Vera
et al., 2024; Khim et al., 2022; Abo-Zed et al., 2020).

Both A. junii and A. haemolyticus are related to A. baumannii, which is
notorious for causing difficult to treat infections in humans due to its
resistant to most antibiotics and its ability to persist in clinical settings
(Castro-Jaimes et al., 2020; Bai et al., 2020). Like A. baumannii, A. junii
and A. haemolyticus exhibit natural resistance to a broad spectrum of
commercially available antibiotics. However, unlike A. baumannii,
A. junii and A. haemolyticus have been relatively understudied despite
recent reports indicating their growing prevalence in human infections.
They are often dismissed as contaminants rather than recognized as true
pathogens (Aguilar-Vera et al., 2024; Elhosseiny and Attia, 2018).
Carbapenem-resistant A. baumannii (CRAB) has been classified as a
critical priority by the World Health Organization (WHO) in 2019 and
has been included in the recently published list in 2024.

Only a limited number of drugs remain active against carbapenem
resistant carbapenem-resistant (CR) Acinetobacter strains, including
cefiderocol and sulbactam/durlobactam (Karruli et al., 2023; Huband
et al., 2023). Cefiderocol, a novel siderophore cephalosporine approved
by the FDA 2019, is used to treat infections caused by various Gram-
negative bacteria, including carbapenem-resistant Acinetobacter strains
(Sato and Yamawaki, 2019). However, there have been reports of
emerging resistance to these new drugs, particularly in A. baumannii
(Malik et al., 2020; Huang et al., 2024; Strateva and Peykov, 2024).

This study aims to perform an in-depth genomic characterization of
two non-baumannii Acinetobacter clinical isolates (AMA204 and
AMAZ207) identified as A. junii and A. haemolyticus, respectively, that
exhibited resistance or concentration-dependent attenuation of cefi-
derocol activity. By combining phenotypic and genomic analyses, we
intend to reveal the potential mechanisms driving the antimicrobial
resistance seen in the strains.

2. Materials and methods
2.1. Bacterial isolates

In 2016, A. junii AMA204 was isolated from a catheter specimen
collected from a 45-year-old female patient in Argentina. Similarly,
A. haemolyticus AMA207 was isolated in 2014 from a skin and soft tissue
infection in a 5-year-old patient, also in Argentina (Table 1). The strains
were cultured on CLED medium, identified using MALDI-TOF mass
spectrometry, and further confirmed by genomic analysis (Almuzara
et al., 2015).

2.2. Genome sequencing

Genomic DNA was extracted using the DNeasy Blood and Tissue kit
(Qiagen Germantown, MD, USA) following the manufacturer’s in-
structions. Whole genome sequencing was carried out using an I[llumina
NovaSeq X Plus sequencer in one or more multiplexed shared-flow-cell
runs, producing 2x151bp paired-end reads (SeqCenter). Demultiplex-
ing, quality control and adapter trimming was performed with bcl-
convert (v4.2.4) (SeqCenter). Quality control of sequencing was per-
formed using the FASTQ software. De novo assembly and quality
assessment were done with the SPAdes and the QUAST software,
respectively (Bankevich et al., 2012; Gurevich et al., 2013).
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2.3. Comparative genome analysis

Genome annotation of both strains was performed using the PROKKA
software (Seemann, 2014). The ortholog functional assignment was
done using EggNOG v2.0 (default parameter) (Cantalapiedra et al.,
2021). The taxonomy assignment was performed by pairwise Average
Nucleotide Identity (ANI) using reference genome of Acinetobacter genus
and JSpeciesWS software (parameter: default, ANI% > 96) (Richter
et al., 2016). The tRNAscan-SE and Infernal software were used for tRNA
and ncRNA prediction (Lowe and Eddy, 1997). The Multilocus sequence
typing (MLST) profile using Pasteur scheme was determined using MLST
scripts (https://github.com/tseemann/mlst, accessed on March 24).
(Page et al., 2015a) The antimicrobial resistance genes (ARG) were
identified using CARD database via RGI (e-value <10_6, Amino Acid
Identity >80 %, Coverage >80 %) (Alcock et al., 2020). Identification of
virulence factors was carried out using BLASTp and the database VFDB
(Virulence Factor Database) (e-value <1O‘6, Amino Acid Identity >30
%, Coverage >70 %) (Chen et al.,, 2012). The K and OC loci were
identified with the Kaptive software using the default parameters
(Wyres et al., 2020). The high-affinity iron-uptake locus was identified
using BLASTp (e-value <107°, Amino Acid Identity >30 %, Coverage
>70 %). Nucleotide sequences of each iron-uptake system were taken
from Antunes et al. (Antunes et al., 2011a). Insertion sequences were
determined using BLASTp and the ISFinder database (e-value<107°,
Amino Acid Identity >30 %, Coverage >70 %) (Siguier, 2006). The
prophages were predicted using the PHASTEST Software using the
default parameters (Arndt et al., 2016). The presence of plasmids of
different groups was carried out by rep and mob homology analysis (e-
value <10~%) (Mindlin et al., 2020).

Pan-genome analysis and the identification of core-genes were done
by the ROARY package using default parameter for each species (Page
et al., 2015a). We included in the analysis, 70 A. haemolyticus and 111
A. junii sequences genomes available in the GenBank (Downloaded July
20th,2025) (Table S1). Genome sequences recovered from metagenomic
sequencing and categorized as atypical according to the GenBank
database were excluded. Core genome phylogeny analysis was per-
formed using the maximum likelihood method implemented in IQ-
TREE2 with default parameters (Page et al., 2015b). The substitution
genetic model was predicted by ModelFinder software using default
parameter (Page et al., 2015b). SNPs were extracted using the snp-sites
software with the default parameters (Page et al., 2016). The genes that
were unique to each genome were extracted from ‘“gene pre-
sence_absence.csv” of Roary output (Sitto and Battistuzzi, 2020).

blapxa-sg and blaypy.1 genetic context was validated by PCR reaction
using specific primers to amplify the genetic structure shown in Fig. 4
(AISAba3: TTAGAACCCATTTAAAGTGTC, OXA58_AMA207:
GTAAAATCTTTGTCCCATGC, ISAba3: TTAGACTGTAGCTAAATCTCG,
ISAbal25: GTCATACCATCATCTTAACTTTG).

2.4. Antibiotic susceptibility assays

The antimicrobial resistance profile was determined by disk diffusion
according to the recommendations of the Clinical and Laboratory
Standards Institute (CLSI) (CLSI CLSI M100-ED29, 2020). Broth micro-
dilution with iron-depleted cation-adjusted Mueller-Hinton broth (ID-
CAMHB, BD Difco) was used as the reference method for cefiderocol
susceptibility testing. The iron depletion was generated following the

Table 1
Genomic features and metadata of A. junii AMA 204 and A. haemolyticus AMA 207.
Strain Taxon Genome Size  GC Content (%)  Contig Number Nso Country of isolation ~ Year of isolation  Source
Gender  Age
AMA204 A. junii 3,519,508 38.71 147 44,595 Female 45 Argentina 2016 BSI
AMA207 A. haemolyticus 3,689,522 39.39 60 227,906 Male 5 Argentina 2014 SSTI

BSI: blood stream infection, SSTL: skin and soft tissue infection.


https://github.com/tseemann/mlst

U. Akhtar et al.

EUCAST recommendation. All procedures were performed in triplicates
following the Clinical and Laboratory Standards Institute (CLSI) (CLSI
CLSI M100-ED29, 2020) and the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) guidelines European Committee on
Antimicrobial Susceptibility Testing (EUCAST), Clinical breakpoints
v15.0 (EUCAST, 2025) (https://www.eucast.org/clinical_breakpoints).
The results were interpreted with CLSI guidelines, except for colistin and
tigecycline, in which cases European Committee on Antimicrobial Sus-
ceptibility Testing (EUCAST) and Food and Drug Administration (FDA)
recommendations were used, respectively. The CLSI, EUCAST, and FDA
publish guidelines for antimicrobial susceptibility testing (AST) that
provide recommendations for testing and interpreting the susceptibility
of microorganisms to antimicrobial agents. These guidelines include
recommendations for standardized methods, quality control procedures
(Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and
Klebsiella pneumoniae ATCC 700603), and interpretive criteria for AST.

2.5. Cefiderocol static concentration time-kill assay

Static concentration time-kill (SCTK) assays were performed, as
previously described, to determine bacterial killing kinetics in ID-
CAMHB, in the absence and presence of cefiderocol against AMA204
and AMA207 (Mezcord et al., 2023a). Cefiderocol killing activity was
evaluated at clinically achievable concentrations (0.5, 1, 4 and 8 pg/mL)
(Katsube et al., 2019) against an initial inoculum of 5 x 10° CFU/mL.
Serial samples (1 mL) obtained at different timepoints (0, 1, 2, 4, 6, 8
and 24-h) following the addition of cefiderocol were diluted with
phosphate buffered saline (PBS, pH 7.4), and 50 pL of the appropriate
bacterial dilution were spirally plated on CA-MHA plates using an
automated spiral plater (easySpiral, interscience, Saint Nom la Breteche,
France) and incubated at 37 °C. After a 16-20 h incubation, bacteria
were quantified using a ProtoCOL automated colony counter (Symbio-
sis, Cambridge, UK). Treatment efficacy was calculated as the percent-
age reduction in the area under the log;o(CFU/mL time curve (AUC_CFU)
relative to the growth control using GraphPad (version 8.0.2, GraphPad
Software, Boston, Massachusetts, USA, www.graphpad.com).

2.6. Data availability

The Whole Genome Shotgun project has been deposited at GenBank
with accession numbers JBMVIY000000000-and JBMVIZ000000000 for
AMA204 and AMA207, respectively. The Genbank files of prokka
annotation, PHASTEST prediction file, pan-matrix, core-gene concate-
nate alignment, Newick tree and Protein variant cluster files (PirA, PiuA,
BauA and CirA) has been deposited in Zenodo repository (Link: https:
//zenodo.org/records/16749373).

3. Results and discussion

3.1. Genomic features of A. junii AMA204 and A. haemolyticus AMA207
clinical isolates

There is a growing recognition of Acinetobacter species other than
A. baumannii being isolated from clinical specimens. However, these
species are frequently overlooked as mere environmental contaminants
and thus are often regarded as having limited clinical relevance (Turton
et al., 2010). In this study, we performed genotypic characterization of
two non-baumannii Acinetobacter clinical isolates that demonstrated
resistance to carbapenems. For A. junii AMA204, the total length of the
genome assembly was 3,519,508 bp and the estimated GC content was
38.7 % (Table 1). While for A. haemolyticus AMA207 the length of the
genome assembly was 3,689,522 bp, and the estimated GC content was
39,4 % (Table 1). The whole genome sequences of both strains were of
good quality (50x coverage, Q score > 30). The assembly quality was
evaluated using the QUAST software and indicated 147 contigs for
AMA204 and 60 contigs for AMA207. The N50 of AMA204 and AMA207
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were 44,595 and 227,906, respectively (Table 1).

Mobile genetic elements, including plasmids, insertion sequences
(IS), and prophages, were identified in both AMA204 and AMA207 ge-
nomes. PHASTEST analysis predicted four putative prophage sequences
in AMA204 and one in AMA207. Based on the PHASTEST completeness
score criteria defined as intact (>90), questionable (70-90), and
incomplete (<70), three intact and one questionable prophage were
identified in AMA204, while a single intact prophage was detected in
AMA207 (Table S1).A total of 23 and 18 insertion sequences were
identified in AMA204 and AMA207, respectively (Table S1), indicating a
higher degree of genomic plasticity in AMA204. IS elements are known
to play key roles in genome rearrangements, regulation of gene
expression, and mobilization of resistance genes in A. baumannii
(Fournier et al., 2006; Hamidian and Hall, 2018).

Plasmid content was inferred through the detection of rep and mob
genes. A single R3-like plasmid (NODE_9) was identified in AMA204,
while no plasmids were detected in AMA207. The R3 plasmid type has
been reported to carry the blapxa.sg gene in various clinical isolates of
A. baumannii (Poirel et al., 2005; Bertini et al., 2010). Although AMA204
contains a R3-like plasmid, the blapxa-ss gene was not located on the
same contig as the identified rep gene. Further validation through
plasmid reconstruction or long-read sequencing will be necessary to
confirm whether blapxa.ss is indeed plasmid-borne in AMA204.

These findings suggest a greater mobilome complexity in AMA204
compared to AMA207, which may contribute to its adaptive potential
and horizontal gene transfer capacity. The presence of multiple intact
prophages and a higher number of IS elements in AMA204 supports the
hypothesis of increased genome flexibility, a feature frequently associ-
ated with multidrug-resistant and epidemic clones of A. baumannii
(Touchon et al., 2014). Such mobile elements may facilitate the acqui-
sition and dissemination of antimicrobial resistance genes, underscoring
their clinical relevance.

Although the presence and function of various virulence factors have
been extensively studied in A. baumannii (Ramirez et al., 2019), much
less is known about the virulence potential of other Acinetobacter spp.
(Schramm et al., 2019). Using the VFDB (Virulence Factor Database), we
identified 203 and 237 putative virulence factor-encoding genes in
AMA204 and AMAZ207, respectively (Table S1). These genes were
associated with multiple virulence-related functions, including type IV
and type VI secretion systems, motility, and biofilm formation.

Notably, AMA207 harbored an additional cluster of virulence genes
putatively involved in siderophore production. These genes showed
homology to the acinetobactin biosynthetic cluster, with amino acid
identity ranging from 55 % to 92 % compared to the well-characterized
acinetobactin locus of the A. baumannii strain ACICU. The presence of
such a cluster in AMA207 suggests a potential enhanced ability for iron
acquisition, which is a known virulence determinant in A. baumannii and
other pathogens (Antunes et al., 2011b; Sheldon and Skaar, 2020).

The identification of siderophore-related genes in AMA207 is
particularly relevant given the increasing recognition of A. haemolyticus
and A. junii as emerging opportunistic pathogens in clinical settings
(Peleg et al., 2008). However, the functional role of these siderophore
systems in non-baumannii Acinetobacter species remains poorly under-
stood. Further experimental studies are warranted to determine whether
these genes are expressed and functional, and how they contribute to
virulence and survival in iron-limited environments.

These findings highlight the genomic virulence potential of Acine-
tobacter species beyond A. baumannii and underscore the need for
expanded research on the pathogenic mechanisms of lesser-studied
species.

3.2. Phylogenomic analysis of A. junii AMA204 and A. haemolyticus
AMAZ207 isolates

A core-genome phylogenetic analysis was performed for each of the
strains, AMA204 and AMA207. This analysis included 1114 core genes
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aligned for A. haemolyticus and 1408 core genes aligned for A. junii. The
resulting phylogenetic trees highlight the extensive genetic diversity of
A. junii and A. haemolyticus genomes collected from various countries,
including Argentina, China, and others, underscoring the global distri-
bution and adaptability of these species. AMA204 is closely related to
strains originating from Russia, as indicated by their tight phylogenetic
clustering (Fig. 1), which suggests the presence of shared traits, such as
antimicrobial resistance mechanisms or adaptive strategies where a
temporal trend is evident, with more recent isolates (2016-2022) clus-
tering together, suggesting ongoing evolutionary changes, including the
potential emergence of novel resistance traits or adaptations to health-
care environments.

From the phylogenetic analysis of A. haemolyticus, the AMA207
strain was found within a clade that included isolates recovered from
Argentina, China, and the USA (Fig. 2). A temporal trend was observed
within the AMA207 clade, with most isolates being recovered in 2017.
AMA207, recovered in 2014, may represent an ancestral strain of the
clone recovered in 2017 within this clade (Fig. 2).

The comparison emphasizes substantial genetic diversity within this
species, with some clades being more region-specific, while others
exhibit a wider geographic distribution. This diversity may be linked to
differences in environmental pressures, hospital settings, or antibiotic
usage patterns.
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3.3. Antimicrobial resistance profile of A. junii AMA204 and
A. haemolyticus AMA 207 clinical isolates

A total of seven antimicrobial resistance genes (ARGs) were identi-
fied in AMA204, while 13 ARGs were found in AMA207 (Table 2 A). The
AMA204 strain harbors blanpy.1 and blagxa.sg B-lactamases genes, as
well as, genes conferring resistance to aminoglycosides, aph(3)-VIa
(amikacin) and aac(3)-IId (gentamicin and tobramycin), plus sul2 (sul-
famethoxazole), mph(E) and msr(E) (macrolides). The AMA207 strain
contains a broader resistome, including blapgg.2, blapxa-ss, blapxa-214,
blatgm-18 (confers resistance to penicillins and cephalosporins), cmlB1
(chloramphenicol), tet(B) and tet(D) (tetracyclines.), aph(3")-Ib, aph(6)-
Id, aph(3)-VIa, aac(3)-Ila, and aac(6)-Ig (aminoglycosides, such as
gentamicin, tobramycin, and amikacin), mph(E) and msr(E) (macrolides,
including erythromycin and azithromycin). These genes contribute to
the strain’s multidrug-resistant phenotype, posing significant concerns
in clinical settings.

Phenotypically, both isolates exhibited resistance to several antibi-
otics (Table 2B), but important differences were noted. Despite AMA207
carrying tet(B) and tet(D), it remained susceptible to minocycline. This
could be due to differential gene expression or the limited activity of
these genes against specific tetracyclines like minocycline, as previously
reported in Acinetobacter species.

AMA204 was resistant to trimethoprim-sulfamethoxazole (STX) and
cefiderocol, with a cefiderocol MIC of 16 mg/L. In contrast, AMA207
demonstrated a lower cefiderocol MIC of 0.5 mg/L.
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Fig. 1. Core-phylogeny of AMA 204 and 111 A. junii genomes. The figure displays the maximum likelihood phylogeny of 112 A. junii sequences. The bootstrap
method was used as a supporting method (1000 iterations). The molecular substitution model was GTR. The tree representation was carried out by iTOL. The symbols
and colors represent the year and country of origin of each genome. The yellow highlight indicates the phylogenetic cluster that it found the AMA204 genome. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Core-phylogeny of AMA 207 and 70 A. haemolyticus genomes. The figure displays the maximum likelihood phylogeny of 71 A. haemolyticus sequences. The
bootstrap method was used as a supporting method (1000 iterations). The molecular substitution model was GTR. The tree representation was carried out by iTOL.
The symbols and colors represent the year and country of origin of each genome. The yellow highlight indicates the phylogenetic cluster that it found the AMA207
genome. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A. junii, is less commonly associated with high-level resistance
compared to other Acinetobacter species like A. baumannii. Regeen et al.
(2014), reported the coexistence of blaxpy.1 and blapxa.sg genes in a
strain of A. junii (Regeen et al., 2014a). The coexistence is significant, as
it complicates treatment options and suggests that these resistance
mechanisms could spread to other bacterial species or become wide-
spread in A. junii.

Regarding aminoglycosides, AMA204 encoded two aminoglycoside
resistance genes (aph(3)-VIa and aac(3)-IId), while AMA207 encoded
five (aph(3")-Ib, aph(6)-Id, aph(3)-VIa, aac(3)-Ila, and aac(6')-Ig), this
genetic difference correlated with slightly broader phenotypic resistance
in AMA207, which showed higher MICs for several aminoglycosides
compared to AMA204 (Table 2).

The 2020 Spanish nationwide surveillance study provides a
comprehensive analysis of the resistance profiles and genomic charac-
teristics of A. junii and A. haemolyticus, along with other species within
the genus. The findings indicate that both A. junii and A. haemolyticus
exhibit substantial levels of antimicrobial resistance. While A. baumannii
frequently often garners attention due to its carbapenem resistance,
these other Acinetobacter species also demonstrate notable resistance
across a range of antibiotics. Both species display variable susceptibility
to antimicrobial agents; specifically, certain isolates of A. junii and
A. haemolyticus remain susceptible to colistin and tigecycline. However,
resistance to commonly used antibiotics, including carbapenems,
cephalosporins, and aminoglycosides, is prevalent. A key factor
contributing to the resistance profiles of both species is the presence of
specific beta-lactamases, particularly extended-spectrum beta-lacta-
mases (ESBLs) (Lasarte-Monterrubio et al., n.d.).

Recently, we investigated the impact of f-lactamase inhibitors on the

efficacy of cefiderocol against carbapenem-resistant Acinetobacter spe-
cies (Mezcord et al., 2023b). The study evaluated the synergistic po-
tential of combining cefiderocol with p-lactamase inhibitors to enhance
its antimicrobial activity. The results demonstrated that certain in-
hibitors, especially those targeting serine p-lactamases, can improve
cefiderocol’s activity by mitigating resistance mechanisms. However,
MBL inhibitors showed limited effectiveness due to their inability to
neutralize all resistance determinants (Mezcord et al., 2023b).

A distinct genetic context for the blapxa-ss gene was observed be-
tween AMA204 and AMA207, with AMA207 lacking four genes encod-
ing proteins of unknown function (hyp). Previous studies have described
the AISAba3-blapxa.sg-ISAba3 genetic structure (Matos et al., 2019). In
our analysis, this structure was identified in AMA204. However, genome
sequencing revealed that the structure appeared incomplete in AMA207.
To further investigate the presence of the AISAba3-blapxa.ss-ISAba3
arrangement, we performed PCR using specific primers. The complete
genetic structure was not detected in AMA207.

The genetic context of blaypy.1 appeared incomplete in AMA204
based on genome sequencing data. To verify the presence of an insertion
sequence upstream of the gene, we performed PCR using primers spe-
cific for the detection of the ISAbal25-blaxpy.1 arrangement. The PCR
results confirmed the presence of this genetic structure in AMA204,
consistent with previous reports in clinical Acinetobacter isolates
(Nordmann et al., 2011).

Additionally, the genetic context of the blapgg.; gene in AMA207 was
identified, flanked by the insertion sequence ISPal3 and the yibF gene
(Fig. 3).

This is the first report of the genetic context of blagxa.sg and blapgr-2
in A. haemolyticus AMA207. The coexistence of blapxa.ss and blaypy.1 in
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A) Antimicrobial resistance genotypic prediction of AMA 204 and AMA 207 strains. Red indicates presence and white indicates absence. B) A. junii AMA204 and

A. haemolyticus AMA207 antimicrobial susceptibility testing.

A) Antimicrobial resistance genotypic prediction of AMA 204 and AMA 207 strains. Red indicates presence and white indicates absence

aac(3)-lld_1
aph(3°)-Via_1
aph(3")-Ib
aph(6)-Id
aac(6')-lg
aac(3)-lla
blayppm.1_1
blagxa.sg 1
blagyp.214
blatgm.1s

blapgg.,
cmiB1

mph(E)_1
msr(E)_1
sul2_2
tet(B)

AMA207 AMA204

B) Antibiotic susceptibility in Acinetobacter junii AMA204 and Acinetobacter haemolyticus AMA207.

Diameters of Inhibition Zones(mm)/Minimum Inhibitory Concentrations (MICs)

AMA204 AMA207

Ampicillin/sulbactam (AMS) 13 (D 17 (D
Trimethoprim-sulfamethoxazole (TMS) 6 (R) 17 (S)
Amikacin (AK) 10 (R) 8 (R)
Cefepime (FEP) 6 (R) 8 (R)
Ceftazidime (CAZ) 6 (R) 6 (R)
Ciprofloxacin (CIP) 29 (S) 28 (S)
Imipenem (IMP) 6 (R) 14 (R)
Meropenem (MEM) 6 (R) 17 (D
Gentamicin (GEN) 11 R) 6 (R)
Tigecycline (TIG) 29 23

Minocycline (MIN) 33(S) 24 (S)
Colistin (COL) 15 12

Cefiderocol (FDC)

ND: not determined. S: susceptible, R: resistant diameters of inhibition zones of antibiogram plates performed according to CLSI. The experiments were repeated at

least three times for each strain. The results were interpreted with CLSI guidelines.

A. junnii has been previously reported (Regeen et al., 2014b). Our
findings, along with the geographical distribution of previously reported
blapxa.sg in A. junii and A. haemolyticus, (Fig. S1) suggest a potential
global widespread of this antibiotic resistance determinants in these
Acinetobacter species, although few reports have been documented
(Fig. S1). Further genomic sequencing of A. junii and A. haemolyticus
isolates is essential to understand the geographical extent of these ob-
servations, and whether this constitutes a global trend.

3.4. Iron uptake system in A. junii AMA204 and A. haemolyticus AMA
207

In human hosts, free iron is scarce, as it is primarily bound to proteins

like haemoglobin, transferrin, and lactoferrin. Consequently, bacteria
produce siderophores to bind and solubilize iron, making it available for
various metabolic processes and influencing their pathogenicity (Arora
et al., 2013). The siderophore acinetoferrin was characterized by Okujo
et al. in A. haemolyticus (Okujo et al., 1994). The achABCD and actBCAD
operons, consisting of eight consecutive genes, are involved in the
biosynthesis and transport of acinetoferrin (Funahashi et al., 2013).
A. junii also produces an active siderophore in response to iron scarcity
(Arora et al., 2013).

In A. baumannii, the genes pirA, piuA, cirA, and bauA encode TonB-
dependent receptors (TBDRs) crucial for iron acquisition, a vital pro-
cess for bacterial survival and pathogenicity. PiuA and PirA are TBDRs
facilitate the uptake of siderophores—molecules that bind and transport
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Fig. 3. Genetic context of blapxa.ss, blanpm.1, and blapgr 2. Green and red arrows indicate insertion sequences and antimicrobial resistance genes, respectively, while
orange arrows represent other genes with known or unknown functions. Genes labeled as “hyp” correspond to those with an unknown function. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

iron into the bacterial cell. Deletion of either piuA or pirA in A. baumannii
leads to a 4- to 8-fold decrease in susceptibility to siderophore-drug
conjugates such as BAL30072 and MC-1, whereas overexpression in
Pseudomonas aeruginosa increases susceptibility by 4- to 32-fold (Moynié
et al., 2017). BauA is another TBDR in A. baumannii, serving as the re-
ceptor for the siderophore acinetobactin (Zimbler et al., 2009). bauA
expression is upregulated under iron-depleted conditions, enhancing the
bacterium’s ability to acquire iron from its environment, playing a sig-
nificant role in the pathogen’s virulence and survival within the host
(Nishimura et al., 2022). CirA is a TBDR associated with the uptake of
catecholate-type siderophores. While its role in A. baumannii is less well-
characterized compared to PiuA, PirA, and BauA, it is believed to
contribute to iron acquisition and may influence susceptibility to
siderophore-antibiotic conjugates (Le et al., 2022).

To explore the conservation of these receptors, we aligned the amino
acid sequences of PirA, PiuA, CirA, and BauA from the clinical isolates
AMA204 and AMA207 with those from A. baumannii AB5075 (Jacobs
et al., 2014) (Fig. S2). The alignment revealed that AMA204 had lower
identity percentages relative to AB5075 for PirA (27.2 %) and PiuA
(26.1 %), compared to AMA207 which showed higher identity for these
receptors (48.5 % and 47.8 %, respectively). CirA displayed intermedi-
ate conservation, with 48.8 % identity in AMA204 and 52.1 % in

AMA207, whereas BauA showed the highest sequence conservation
among the proteins analysed, with 56.3 % identity for AMA204 and
60.4 % for AMA207. Beyond the percentage data, qualitative analysis of
the alignments provided further insights. For PirA, AB5075 shows sig-
nificant sequence divergence compared to AMA204, with no sequence
alignment observed in several regions, suggesting possible functional
divergence or even loss of this receptor’s role in AMA204.

In contrast, AMA207 shares more conserved regions with AB5075,
particularly in ligand-binding and TonB-dependent receptor motifs,
although distinct differences remain in several functional domains.
Regarding PiuA, AB5075 exhibits conserved sequences with AMA207 in
regions linked to siderophore binding and transport, while AMA204
shows the least alignment, reinforcing the hypothesis of species- or
strain-specific adaptations in iron acquisition strategies.

For CirA, all three strains exhibit conserved motifs essential for
catecholate-type siderophore uptake, though sequence variations,
particularly in N-terminal and loop regions, may affect receptor regu-
lation or interactions with distinct siderophores. Finally, BauA shows
the highest conservation, especially between AB5075 and AMA207,
with conserved siderophore binding domains suggesting a similar role in
acinetobactin-mediated iron uptake across species, albeit with minor
species-specific adaptations.
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B. AMA207, FDC MIC 0.5 mg/L
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Fig. 4. Static concentration time-kill studies evaluating the killing kinetics of cefiderocol (FDC) monotherapy (0.5, 1, 4 and 8 mg/L) against an initial inoculum of 5
x 106 CFU/mL of A. junii AMA204 (A) and A. haemolyticus AMA207 (B) clinical isolates over 24 h of incubation at 37 °C.

Furthermore, we analysed the presence or absence of the iron
acquisition proteins PirA, PiuA, CirA, and BauA in A. junii and
A. haemolyticus genomes available in the NCBI database using tblastn.
Among the 112 A. junii genomes analysed, the presence of PirA, PiuA,
CirA, and BauA was detected in 85 (75.89 %), 77 (69.64 %), 62 (55.36
%), and 101 (90.18 %) genomes, respectively. In contrast, among 71
A. haemolyticus genomes, these genes were detected at lower fre-
quencies: PirA in 2 (2.82 %), PiuA in 18 (25.35 %), CirA in 50 (70.42 %),
and BauA in 17 (23.94 %) genomes (Table S2).

Sequence analysis revealed substantial protein diversity, with 45, 31,
22, and 44 variants identified for PirA, PiuA, CirA, and BauA, respec-
tively, in A. junii. In A. haemolyticus, 1, 11, 14, and 6 variants were
identified for these same proteins (Table S2, https://zenodo.org/records
/16749373). Despite this variability, the amino acid identity among
variants ranged from 98 % to 100 %, suggesting a high degree of con-
servation within each species.

These findings highlight notable differences in the distribution of
iron uptake systems between A. junii and A. haemolyticus. Iron acquisi-
tion is a critical virulence mechanism in Acinetobacter spp., allowing
pathogens to survive in the iron-limited environment of the host
(Antunes et al., 2011b). The bauA gene, in particular, encodes a TonB-
dependent receptor for acinetobactin—a siderophore essential for iron
acquisition in A. baumannii—and has been associated with enhanced
virulence and survival in host tissues (Penwell et al., 2012). The high
prevalence and diversity of BauA in A. junii suggest that similar iron
uptake strategies may contribute to its opportunistic pathogenicity. In
contrast, the limited presence of PirA and BauA in A. haemolyticus ge-
nomes could reflect distinct ecological niches or iron acquisition
strategies.

Further studies are needed to elucidate the functional roles of these
proteins in non-baumannii Acinetobacter species and to determine
whether they represent viable targets for novel therapeutics or vaccine
development.

3.5. Pharmacodynamic activity of cefiderocol against AMA204 and
AMA207

In the absence of cefiderocol, AMA204 and AMA207 showed a
similar growth pattern in ID-CAMHB, reaching a maximum carrying
capacity of ~9 log;o CFU/mL after 8 h (Fig. 4). Change in bacterial
burden (log;g CFU/mL) over time is illustrated in Fig. 4, with a lower
limit of detection of 1.3 log1o CFU/mL. For both isolates, cefiderocol
showed a concentration dependent killing activity. For AMA204,
cefiderocol-resistant, NDM-producing strain, cefiderocol 0.5 mg/L did
not show significant killing activity with a 2.5 % reduction in AUC_CFU.
With cefiderocol 2, 8 and 16 mg/L, an early killing activity reaching a

reduction of around 4 log;o CFU/mL by 4 h was followed by regrowth
similar to growth control, leading to 20-24 % reduction in AUC_CFU
(Table S3).

Resistance to cefiderocol has been associated with a range of
mechanisms, including the production of p-lactamases—particularly
NDM, KPC, AmpC variants, OXA-427, and PER- and SHV-type ESBLs—as
well as mutations in porins, siderophore receptors, and alterations in
PBP-3. Among Gram-negative bacteria, the predominant resistance
mechanisms appear to involve the co-expression of multiple f-lacta-
mases combined with reduced membrane permeability (Choby et al.,
2021; Kayama et al., 2024; Kohira et al., 2020). NDM expression con-
tributes to cefiderocol resistance through additional pathways, such as
increased copy numbers of the blanpy gene and mutations in side-
rophore receptor genes like pirA and piuA (Nurjadi et al., 2022; Lan
et al., 2022). In the case of the NDM-producing strain AMA204, no
sequence similarity was observed with the pirA gene, and only minimal
alignment was found with piuA, suggesting possible functional diver-
gence or even a loss of receptor activity (see Section 2.4 for details).
Mutations in the PiuA and PirA proteins have been linked to reduced
susceptibility to cefiderocol (Vines et al., 2025), a pattern also observed
in the AMA204 strain (Fig. 4A). Genomic analyses of cefiderocol-
resistant A. baumannii clinical isolates have further implicated the
absence of piuA, either alone or in conjunction with reduced pirA
expression, as contributing factors to cefiderocol resistance (Malik et al.,
2020; Yamano et al., 2022)).

In the cefiderocol-susceptible strain AMA207, a strong bactericidal
effect was observed, achieving ~4 logio CFU/mL reduction by 8 h.
However, this effect was sustained only at the highest tested cefiderocol
concentration of 16 mg/L. AMA207 carries the PER-2 p-lactamases, and
PER-like p-lactamases have been associated with reduced cefiderocol
susceptibility in CRAB (Seifert et al., 2023). Poirel et al. also reported a
link between cefiderocol resistance and the presence of PER-like p-lac-
tamases (Poirel et al., 2021).

In AMA207, reduced cefiderocol activity at lower concentrations is
likely due to hydrolysis of cefiderocol by the PER-2 enzyme (Fig. 4B).
Therefore, while AMA207 meets the susceptibility threshold by MIC
testing, the dynamic bactericidal activity is affected at submaximal
concentrations, suggesting a narrow therapeutic window. This high-
lights a potential limitation of relying solely on static MIC values for
clinical interpretation, particularly in strains harboring PER-type en-
zymes. The increased activity at higher cefiderocol concentrations may
be attributed to the presence of functional TonB-dependent receptor
(TBDR) genes, piuA and pirA (see Section 3.4), which are essential for
siderophore-mediated iron uptake and facilitate the transport of cefi-
derocol into bacterial cells.


https://zenodo.org/records/16749373
https://zenodo.org/records/16749373

U. Akhtar et al.

4. Conclusions

This study focuses on the sequencing and analyzing the genomes of
AMA204 and AMA207 to identify key genetic characteristics such as
gene content, antibiotic resistance determinants, and potential virulence
factors. The analysis offers a thorough overview of the genomic differ-
ences between these two strains, providing insights into their biological
functions and pathogenic potential. By detailing the genomic features of
these isolates, the study aims to deepen our understanding of their
clinical relevance and potential treatment challenges.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.meegid.2025.105820.
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