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Am'd_e history: Objective: Klebsiella pneumoniae carbapenemase (KPC) variants, predominantly KPC-2 and KPC-3, are sig-
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while remaining susceptible to ceftazidime-avibactam (CZA). Recently, new KPC variants have developed
resistance to CZA through mutations, insertions, or deletions in regions such as the 2-loop, 240-loop
(237-243 aa), and 270-loop (266-275 aa). This study investigated collateral resistance to cefiderocol (FDC)

Editor: S Stefano Stracquadanio and cefepime/zidebactam (FPZ) in isolates with these mutations.

Keywords: Methods: Fifteen clinical KPC-producing Klebsiella spp. isolates representing 15 distinct variants were
KPC analysed. Antimicrobial susceptibility testing determined the MICs for CZA, carbapenems, FDC, FPZ, and
Ceftazidime/avibactam other antibiotics. Synergy between CZA and FDC was assessed. Whole-genome sequencing (WGS) was
Cefiderocol used to identify resistance-related mutations.

Zidebactam Results: CZA resistance was confirmed in 12/15 variants. Collateral resistance to FDC occurred in eight
Collateral resistance isolates, with five exhibiting spontaneous resistant subpopulations. Six FDC-resistant strains had muta-

tions in the 270-loop (266-275 aa). FPZ resistance was seen in three KPC variants, especially those with
mutations in the 270-loop, though many 2-loop and 240-loop (237-243 aa) mutants remained suscepti-

ble. WGS of FDC-resistant subpopulations revealed additional mutations in ompC, rpoC, dksA, and cirA.
Conclusions: Emerging CZA-resistant KPC variants often exhibit collateral FDC resistance, with FPZ seen
less frequently. Mutations in blagpc, cirA, and other genes contribute to resistance. Understanding these
emerging resistant patterns linked with new KPC variants is crucial to inform therapeutic decisions, as

emerging resistance may limit last-line treatment options in clinical settings.

© 2025 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial
Chemotherapy. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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the most prevalent variants worldwide, particularly in North and
South America, Europe, and parts of Asia [4-6]. The global dis-
semination of KPC-2 and KPC-3 underscores the importance of
continuous molecular surveillance, as emerging mutations within
these variants can alter susceptibility profiles to newly combina-
tions of B-lactam/B-lactamase inhibitor [1,3,7]. KPC-2 and KPC-
3 confer resistance to most B-lactams, including carbapenems,
but remain susceptible to newer f-lactam/ S-lactamase inhibitors
like ceftazidime-avibactam (CZA). However, since the introduc-
tion of CZA, numerous KPC variants resistant to this combina-
tion have emerged [2,3]. In these KPC variants, mutations, inser-
tions, and/or deletions have been identified in distinct regions
of KPC B-lactamase. Mutational “hot spots” associated with re-
sistance to CZA are located in specific regions: (1) the Q2-loop
(residues 164 to 179, which border the lower part of the catalytic
pocket), (2) the 240-loop (amino acids 237 to 243. adjacent to
the conserved KTG motif and defining the right side of the ac-
tive site), and (3) the 270-loop (amino acids 266 to 275, posi-
tioned further from the active site between § strand 5 and the 11
helix) [3,8-10].

The emergence of ceftazidime-avibactam resistance in KPC-
producing K. pneumoniae has been associated with mutations in
these critical structural regions. Recent studies have described
novel KPC variants, such as KPC-189 and KPC-197, which confer re-
sistance to CZA through modifications in these sites [11,12]. Addi-
tionally, the KPC-74 variant has been identified as a CZA-resistant
enzyme that emerged during treatment, highlighting the ongoing
evolution of KPC enzymes under selective pressure [13]. Under-
standing the effects of these substitutions is essential for tracking
the evolution and spread of KPC variants resistant to CZA and its
collateral resistance to other antibiotics, such as cefiderocol (FDC)
and cefepime/zidebactam (FPZ).

Published literature have reported the occurrence of collateral
resistance to FDC in few KPC variants, including KPC-31, KPC-33,
KPC-62, and novel variants like KPC-109 and KPC-203 (Table S1).
The concept of “collateral resistance” has been described in the lit-
erature as the unintended resistance to one antibiotic due to selec-
tive pressure exerted by another, even when they do not share the
same direct target [14,15]. Specifically, mutations in blaypc associ-
ated with CZA resistance have been linked to structural changes in
the enzyme that impact its interaction with other B-lactams, in-
cluding FDC [16]. Similarly, porin alterations—often secondary to
B-lactamase evolution—can restrict FDC uptake, further support-
ing the collateral resistance phenomenon [17]. Most of these vari-
ants exhibiting FDC collateral resistance have substitutions in the
Q-loop region, significantly affecting the hydrolysis of both antibi-
otics and contributing to FDC collateral resistance. Notably, KPC-
109, a variant of KPC-3, was identified in a clinical isolate (NE368)
with a six-amino acid insertion in the 270-loop region, mediating
resistance to CZA and FDC [18].

To our knowledge, collateral resistance to FPZ and ce-
fepime/taniborbactam in clinical isolates has not been reported in
the literature. The aim of our present study is to describe the oc-
currence of collateral resistance to FDC and FPZ in Klebsiella clinical
isolates harboring various KPC variants (n = 15) in the three main
specific regions.

2. Materials and methods
2.1. Bacterial strains

A total of 37 out of 175 Klebsiella spp. clinical isolates harbored
a KPC variant distinct from KPC-2 or KPC-3. A representative iso-

late from each variant was selected for this study. A total of fif-
teen representative selected KPC-producing Klebsiella spp. clinical
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isolates, not epidemiologically related and collected from various
regions in Argentina over the span of four years (2019-2023), were
included (Table S2). Among these isolates, 15 KPC variants were
included (Table 1 and Fig. 1). The K. pneumoniae ATCC reference
strains BAA1705 (KPC-2 producer) and 13,883 (susceptible) were
also tested as reference.

2.2. Antimicrobial susceptibility testing (AST)

The minimum inhibitory concentrations (MICs) for CZA,
meropenem (MEM), imipenem (IMP), cefepime (FEP), zidebac-
tam (ZID), FPZ, ertapenem (ETP), ertapenemy/zidebactam (ETP/ZID*),
imipenem/relebactam (I/R), and meropenem/varbobactam (M/V)
were determined using broth microdilution methods and/or com-
mercial E-strips (Liofilchem S.r.l, Roseto degli Abruzzi, Italy) in
accordance with the Clinical and Laboratory Standards Institute
(CLSI) guidelines. For testing FDC susceptibility, commercial E-
strips (Liofilchem S.rl., Roseto degli Abruzzi, Italy) and broth
microdilution with iron-depleted cation-adjusted Mueller-Hinton
medium as the reference method were used. All procedures were
carried out in accordance with the manufacturer’s instructions and
met the standards of CLSI [19] and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) (https://www.eucast.
org/clinical_breakpoints).

Resistant subpopulations within the inhibition ellipse zones
of FDC were selected for further studies and whole genome se-
quence analysis. Stocks of the FDC-resistant subpopulations were
stored at —80 C and the stability of the FDC resistance was
determined.

For FPZ categorisation, the CLSI FEP breakpoint was used. Syn-
ergy between CZA and FDC was performed in resistant and het-
eroresistant strains using MTS Synergy Application System (Li-
ofilchem S.r.l,, Roseto degli Abruzzi, Italy). The concentration ranges
used for the combination were 0.016-256 pg/mL in the pres-
ence of a fixed concentration of avibactam (4 pg/mL) for CZA
and 0.016-256 pg/mL for FDC. Synergy was evaluated using the
fractional inhibition concentration index (FICI) as previously de-
scribed [20]. Interpretation of FICI values where FICI < 0.5 indi-
cates synergy, >0.5-1.0 additive effect, >1.0-4.0 indifference, and
>4.0 antagonism. Quality control strains, such as Escherichia coli
ATCC 25,922 and the K. pneumoniae ATCC 13,883 strains were
included in the experiments. Each strain was tested at least in
duplicates.

2.3. Whole genome sequencing analysis

The genomic DNA extraction of parental strain and intra halo
colonies was performed using Wizard Promega kit (Promega,
Madison, WI, USA). The Genomic sequencing was done using No-
vaSeq X Plus, producing 2 x 151 bp paired-end reads. To en-
sure sequence quality, FASTQC software analysis (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was performed, fol-
lowed by trimming and filtering using Trimmomatic software
(version: 0.40, ILLUMINACLIP: TrueSeq3-PE.fa.2:30:10; LEADING:3;
TRAILING:3; SLIDINGWINDOW: 4:15; MINLEN:36) [21]. De novo se-
quence assembly was conducted using SPAdes (version: 3.15.4, de-
fault parameters) [22] and the quality was subsequently evalu-
ated using QUAST (version: 5.2.0) [23]. Genome annotation was
performed through PROKKA (version 1.14.5) [24], while variant
calling was carried out using the breseq and gdtools software
packages (version: 0.38.1, consensus mode, default parameters)
[25] . Recombination regions were identified and removed us-
ing Gubbins software (version: 3.3.0, default parameters) [26].
Plasmid identification was performed using PlasmidFinder v2.1
[27]. The copy number gene (blaxpc) was assessed using CCNE
tool [28]. The Whole Genome Shotgun project of KPNMA215, KP-


https://www.eucast.org/clinical_breakpoints
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

M. Hamza, G.M. Traglia, L. Maccari et al.

Table 1

KPC variants strains, molecular and phenotypic characteristics.
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Table 1 (continued)
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CZA, ceftazidime avibactam; FDC, cefiderocol; FEP, cefepime; ZID, zidebactam; FPZ, cefepime zidebactam; IMP, imipenem; MEM, meropenem; ETP, ertapenem; I/R,

IMP/relebactam; M/V, MEM/varbobactam.

Green cells indicate MIC values that correspond to susceptibility according to CLSI standards. Yellow cells represent values in the Susceptible-Dose Dependent category,
while red cells correspond to MIC values classified as resistant according to CLSI criteria.
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Fig. 1. KPC variants aligned and compared against KPC-2. Protein sequences were retrieved from the CARD database and S-Lactamase Database. Aligned with MUSCLE,

visualised by NCBI MSA viewer.

NMA216, and KAMA222 strains has been deposited in GenBank
under accession numbers JBIUGIO00000000, JBIUGH000000000,
and ]JBIUGG000000000respectively. In addition, the fastq files,
quality analysis files, assemblies’ sequences and genome annota-
tion files of wild-type and IHC were uploaded in Zenodo repos-
itory: https://zenodo.org/records/15122353(last accessed April 1,
2025).
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3. Results and discussion

3.1. Description of CZA resistance and collateral resistance to FDC in
klebsiella kpc variants strains

The CZA MICs for 15 KPC variants were determined, con-
firming resistance in 12 of them (Table 1). Interestingly,
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Table 2
Synergy between CZA and FDC for FDC resistant/hetero-resistant KPC variant strains.
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MTS synergy

Strains MIC CZA(FDC) MIC FDC(CZA) FICI Synergy

KPNMA214 6 2 0.58 Additive
KPNMA215 4 0.5 0.29 Synergy
KPNMA216 6 1 0.38 Synergy
KPNMA217 0.75 0.38 0.13 Synergy
KPNMA220 16 4 0.83 Additive
KPNMA221 64 4 1.67 Additive
KAMA222 4 0.094 0.08 Synergy
KPNMA227 3 0.19 0.76 Additive
KPNMA228 32 8 0.83 Additive

FDC, cefiderocol; FICI, Fractional Inhibitory concentration index.
Synergy was defined as FICI < 0.5, additive effect as FICI between 0.5 and 1.

three variants with mutations in the -loop—KPC-25, KPC-
160, and KPC-165—remained susceptible to CZA, despite al-
terations in this critical region (Table 1). Prior publications
of these specific KPC variants have been identified in the
literature.

We next studied the collateral resistance to FDC, and we ob-
served resistance in eight of the 15 isolates, using EUCAST break-
point (BP) guidelines. Among the tested strains, resistant colonies
with the gradient strip inhibition zone (FDC resistant subpopula-
tions) were also observed in five strains including one that was
categorised as FDC susceptible (Table 1). Six of the FDC resistant
strains harbour substitutions in the 266-275 loop (Table 1). Previ-
ous reports have identified collateral resistance to FDC when sub-
stitutions in the Q-loop are present (Table S1) [3]. In addition,
these studies highlight the emergence of FDC resistance in high-
risk clones such as the ST307 lineage, which has been responsible
for outbreaks in hospital settings, particularly in ICUs [29,30]. KPC-
62, identified in ST307 isolates, displayed resistance to both CZA
and FDC, driven by the L169Q mutation within the blagpc gene. The
novel KPC-203 variant found in Italy adds further complexity to
the resistance landscape, as it exhibits collateral resistance to CZA
and FDC due to significant modifications at key positions, including
a deletion in the Q-loop and an insertion in the 260 amino acid
position [31]. The newly identified KPC-216 shows collateral resis-
tance to both CZA and FDC. The KPC-216 variant, characterised by
a lysine insertion at position 170 in the Q-loop, was isolated from
a K. pneumoniae ST101 strain and demonstrated resistance to both
CZA and FDC [32]. In addition, KPC-109, a variant of KPC-3, was
identified in the clinical isolate, featuring a six-amino acid inser-
tion in the 270-loop region, which conferred resistance to both CZA
and FDC [18]. Reports with mutations such as the D179Y substitu-
tion found in both KPC-31 and KPC-33, and observed in this work,
illustrate the challenge of treating infections with these variants,
as they lead to not only CZA resistance but also a potential for col-
lateral resistance with FDC [33-36].

We tested the synergy between CZA and FDC in all strains
exhibiting resistance or heteroresistance to both antibiotics. Syn-
ergy was observed in four strains (Table 2). Particularly, synergy
was seen in the strains exhibiting intracolonies for FDC (Table 1
and 2). Evaluating the synergy between FDC and CZA, a clinically
available fixed combination, addresses the need to explore rele-
vant therapeutic options. While avibactam has previously demon-
strated synergy with FDC, it is not available as a stand-alone agent
for clinical use. In contrast, CZA is a formulation used in clinical
practice that contains both ceftazidime and avibactam. Therefore,
assessing the synergy between CZA and FDC allows for a more
translationally relevant interpretation of potential combination
therapies.
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3.2. Impact of KPC variants in cefepime/zidebactam susceptibility

Firstly, we observed that all 15 KPC variants were resistant to
cefepime (FEP), and all but one were resistant to zidebactam (ZID)
(Table 1). When testing FPZ, three of the KPC variants displayed
resistance (Table 1). Notably, most strains harboring mutations in
the Q-loop and the 240-loop remained susceptible to FPZ.

Only one report on FPZ has been published, where the
authors evaluated the antimicrobial susceptibility of a KPC-
33 variant, which exhibited susceptibility to FPZ (Shi Qingyu,
2020, DOI: 10.1093/CID/CIAA1521). Another report evaluated
cefepime/taniborbactam, showing decreased susceptibility in
laboratory-constructed strains with substitutions in both the
Q—loop and the 240-loop, particularly when combined with porin
defects (mutations in OmpK35 and OmpK36) [37]. Our study is
the first to describe collateral resistance to FPZ in KPC variants.

When compared with KPC-producing clinical isolates from the
same period that lacked KPC mutations, variants exhibiting resis-
tance to CZA were significantly more likely to be resistant to FPZ
and FDC and more susceptible to carbapenem (Fisher’s exact test,
P < 0.05) [38]. While based on limited samples, this comparison
and analysis fit for normal distribution and open new venues for
future studies with larger cohorts.

As amino acid changed in the MarR, PBP-2, PBP-3, OmpK35, and
OmpK36 proteins, or their respective promoters, may contribute
to the FDC and FPZ resistance phenotypes [39,40]. We analyzed
the sequences of the three KPC-producing strains with FPZ re-
sistance. A comparative analysis of KPNAMA215 and KPNAMA216
against the FDC-susceptible ATCC 13,883 strain revealed no amino
acid substitutions in PBP-2 and PBP-3. However, in OmpK35, only
KPNAMA216 exhibited an A8T substitution, while multiple amino
acid changes were observed in OmpK36 in both KPNAMA215 and
KPNAMA216 (Fig. S1).

The comparison of the KAMA222 genome to K. aerogenes
FDAARGOS 1442 (used as the reference genome) identified two
amino acid substitutions in PBP-2 (G107D and A354D) (Fig. S2),
as well as multiple changes in OmpK36, consistent with the find-
ings in KPNAMA215 and KPNAMAZ216 (Fig. S1 and Fig. S2). In MarR,
an S82G amino acid substitution was detected in KPNAMA215 and
KPNAMA216, whereas KAMA222 showed no amino acid changes in
this protein (Fig. S2). The presence of multiple amino acid substi-
tutions in OmpK36 across the analyzed genomes complicates the
assessment of their specific contribution to FDC and FPZ resistance.
However, we acknowledge that the small sample size limits the
generalisability of our findings; we cannot rule out the possibility
that these alterations play a role in the observed resistance. Fur-
ther analysis involving a larger number of strains and more diverse
isolate collections, along with their respective isogenic strain with
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not mutation on the porins is necessary to draw definitive conclu-
sions.

In conclusion, while previous reports have highlighted suscep-
tibility to FPZ in specific KPC variants, such as KPC-33, and doc-
umented reduced susceptibility in other FEP combinations like
FEP/taniborbactam under certain genetic conditions, our study is
the first to describe collateral resistance to FPZ in multiple KPC
variants. This finding underscores the complexity of resistance
mechanisms in KPC-producing strains, particularly those involving
mutations in the 270-loop (266-275 aa). Although only three FPZ-
resistant isolates were identified in our collection, their characteri-
sation provides valuable preliminary insights.

3.3. Collateral resistance to ertapenem/zidebactam (ETP/ZID) KPC
variants

Among the 15 KPC variant isolates tested in this study, six
were resistant to ertapenem (ETP) (Table 1). When evaluating the
ETP/ZID combination, susceptibility was restored in only two iso-
lates (Table 1). Most of the ETP-resistant strains harbored muta-
tions in the 270-loop (266-275 aa), which may contribute to their
resistance phenotype (Table 1).

Notably, one isolate (KPNMA216) exhibited the highest MIC
(>32 mg/L) to ETP and ETP/ZID, and this strain possessed alter-
ations in both OmpK35 and OmpK36 and the 270-loop (266-275
aa) mutations on the KPC (Table 1 and Fig. S1). The presence of
porins mutations suggests a potential role in limiting B-lactam up-
take and enhancing resistance to fB-lactam/f-lactamase inhibitor
combinations.

Although all the isolates analyzed in this study come from Ar-
gentina, the resistance mechanisms identified, in particular the
mutations in blagpc associated with resistance to CZA and its im-
pact on FDC and FPZ, have been reported in various regions of
the world, including in high-risk clones such as ST258 and ST307
[11,29,41,42]. Our findings agree with these previous studies, sug-
gesting that the described mechanisms can be extrapolated beyond
the local context.

To date, there have been no prior reports of collateral resis-
tance to FDC and ETP/ZID in KPC-producing isolates [43-45]. This
study showed the occurrence of this phenomenon for the first
time and underscores the critical need for ongoing comprehensive
surveillance to monitor emerging resistance patterns in multidrug-
resistant Klebsiella. The apparent lack of reports about collateral
resistance to FDC and ETP/ZID in clinical isolates may reflect lim-
ited routine testing availability rather than a genuine absence of
resistance. Incorporating these agents into routine antimicrobial
susceptibility testing can improve the detection of emerging re-
sistance, particularly in regions with increasing novel S-lactam/g-
lactamase inhibitor use.

3.4. Collateral susceptibility to carbapenems in K. pneumoniae KPC
variants

We tested the MICs of imipenem (IMP) and meropenem (MEM)
in the 15 KPC variants, and we observed in 12 strains collateral
susceptibility to IMP (n 1), MEM (n 5), and both (n 6)
(Table 1). MEM exhibits lower MICs compared to imipenem, indi-
cating that it is generally less affected by resistance mechanisms,
including blagpc variants. Collateral resistance to carbapenems was
seen in strains harbouring KPC variants with substitutions in the
270-loop (266-275 aa) (Table 1). The mutations in the 270-loop
region can alter the local flexibility and conformation of the active
site, influencing substrate binding and catalytic efficiency, particu-
larly in class A B-lactamases [46-48].

Previous investigations have suggested that certain substitu-
tions in KPC variants, particularly those in the -loop region,
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may reduce the enzyme’s carbapenemase activity, thereby restor-
ing susceptibility to carbapenems [3,8,49,50]. For instance, vari-
ants such as KPC-31 and KPC-33, which harbor the D179Y sub-
stitution, have been shown to confer resistance to CZA while ex-
hibiting collateral susceptibility to carbapenems. No isolates with
mutations in 270-loop (266-275 aa) showed collateral susceptibil-
ity to imipenem. Although our study did not include kinetic val-
idation, previous literature has demonstrated the functional rele-
vance of these mutations through mechanistic approaches, show-
ing that substitutions, insertions or deletions can contribute to
CZA resistance by increasing affinity for CAZ and reducing sus-
ceptibility to AVI, ultimately affecting enzyme stability and broad-
ening its spectrum of activity [51,3,13]. In addition, we tested
imipenem/relebactam (I/R) and meropenem/varbobactam (M/V)
and we observed that vaborbactam reduced meropenem MICs by
more than 2 log,-fold in 12 strains, whereas relebactam achieved
the same reduction in 8 out of 15 strains. (Table 1).

Our work and previous findings highlight the complex inter-
play between f-lactamase mutations and antibiotic efficacy, where
changes that drive resistance to one class of antibiotics may inad-
vertently restore susceptibility to others, such as carbapenems. This
observed collateral susceptibility to carbapenems may represent
a potential therapeutic opportunity in those cases where resis-
tance to newer B-lactam/B-lactamase inhibitors is observed. How-
ever, more research is needed to further explore this phenomenon
across different KPC variants and its potential use in clinical con-
texts.

3.5. WGS analysis of FDC spontaneous emergent resistant cells

Spontaneous hetero-resistant colonies from three KPC variant
strains were chosen for further analysis. The MIC for FDC for these
resistant subpopulations showed a 2-fold increase for KPNMA215
and KPNMA216 and a 3-fold increase KPNMA222 (Table 3).

The WGS was performed and subsequent genome analyses
of K. pneumoniae strains KPNMA215 and KPNMA216, along with
K. aerogenes strain KAMA222 and their FDC-resistant subpopula-
tions, revealed distinct sequence types (STs) and species classifica-
tions. KPNMA215 was classified as ST15, KPNMA216 as ST14, and
KAMA222 as ST92. Common antimicrobial resistance (AMR) genes
were found across all strains, including blatgy, blasyy, 0gXxA, 0gxB,
fosA6, tet(A), and tet(D), as well as aminoglycoside-modifying en-
zymes such as aac(6')-Ib-cr and aph(6)-Id (Table S3). The pres-
ence of plasmids was identified in all three sequenced genomes.
All three genomes harbour plasmids belonging to the incompatibil-
ity group IncL/M. Additionally, an IncFlI-type plasmid was found in
KPNAMA215 and KPNAMA222. An IncFIB-type plasmid was identi-
fied in the genomes of KPNAMA215 and KPNAMA216. Furthermore,
KPNAMA215 also carries a plasmid belonging to the incompatibil-
ity group IncR. No resistance genes were identified on the plas-
mids.

In the mutational analysis of the FDC-resistant subpopulation
[HC215, a mutation was detected in the ISSod9 transposase, which
plays a role in the movement of genetic elements and may fa-
cilitate the horizontal transfer of resistance genes. Additionally,
a mutation was found in the rpoC gene, which encodes the f-
subunit of DNA-directed RNA polymerase. Mutations in rpoC have
been associated with transcriptional accuracy and stress adapta-
tion, which may contribute to bacterial survival under antibiotic
pressure by modulating global gene expression. The mutation iden-
tified in rpoC in THC215 may alter RNA polymerase function and
global gene expression patterns, ultimately reducing susceptibility
to FDC (Table 3 and Table S4).

For KPNMA216 FDC-resistant subpopulation IHC216, mutations
were detected in the ompC gene. This porin facilitates passive dif-
fusion of B-lactams into the periplasmic space, and its alteration
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Table 3
Parental and resistant subpopulations FDC MIC and ST, and relevant mutations associated with antibiotic resistance.
FDC MIC (mg/L) Relevant mutations ST
[HC Strains KPC variants Parental Intracolony ompC dksA cirA rpoC
KPNMA215 KPC-162 4 16 wild-type wild-type wild-type R220C (CGC—IGC) ST15
KPNMA216 KPC-163 8 32 311 K (TAG—AAG) deletion (55/456 nt) wild-type wild-type ST14
KAMA222 KPC-57 6 48 wild-type wild-type G75R (GGC—CGC) wild-type ST92

FDC, cefiderocol; ST, sequence type.

likely reduces permeability, limiting antibiotic entry and contribut-
ing to resistance. Similar resistance mechanisms have been ob-
served in clinical isolates involving OmpK35 and OmpK36 porins
in K. pneumoniae [31,37,52]. The presence of the ompC mutation
may contribute to the reduced susceptibility to antibiotics [37].
A mutation in dksA gene, which encodes an RNA polymerase-
binding protein, was also observed, suggesting its role in regulating
gene expression under stress, particularly during antibiotic expo-
sure (Table 3 and Table S4) [53]. Specifically, a deletion of the first
93 nucleotides was identified in the dksA gene, potentially leading
to a loss-of-function mutation. This truncation may impair the bac-
terial stress response and further modulate the expression of resis-
tance or persistence-related genes (Table S4). Lastly, in the [HC222
subpopulation, we identified a typical mutation in the cirA gene, a
gene frequently prone to mutations and previously linked to FDC
resistance (Table 3 and Table S4). cirA encodes a TonB-dependent
outer membrane receptor responsible for ferric-siderophore up-
take. Although the mutation identified here has not been previ-
ously reported, its location and nature suggest functional inacti-
vation. The novelty of this mutation highlights the genetic flexi-
bility of cirA and its role as a resistance determinant. A previous
case study of a hypervirulent K. pneumoniae strain co-producing
KPC-2 and SHV-12 identified a truncation in cirA, leading to FDC
resistance [54]. Similarly, other studies have shown that cirA mu-
tations, when combined with the production of NDM-5 carbapen-
emase, result in even higher levels of FDC resistance [30,55-58].
This synergy between cirA inactivation and B-lactamase activity
underscores the complex interplay of resistance mechanisms. Pre-
vious findings and our current work emphasise the need to moni-
tor cirA mutations as a significant marker of FDC resistance in clin-
ical settings, particularly in strains producing KPC-2, and KPC vari-
ants, as well as NDM-5.

The copy number of the blagpc gene and the associated increase
in carbapenems, CZA, and B-lactamase/inhibitors resistance have
been previously reported [39,52,59]. In this study, the copy num-
ber of the blaypc gene in both WT and IHC colonies of strains KP-
NAMAZ215, KPNAMA216, and KAMA222 was evaluated using whole
genome sequencing data and the CCNE tool. An increased blagpc
copy number was observed in the IHC colonies of KPNAMA215
(1.52-fold changes) and KAMA222 (1.48-fold changes) compared
to their respective WT colonies. In contrast, no difference in the
blagpc copy number was detected in the IHC colonies of KP-
NAMA216.

Together, our findings indicate that mutations in cirA, ompC,
rpoC, and dksA play complementary roles in reducing suscep-
tibility to FDC by affecting membrane permeability, drug up-
take, and transcriptional regulation under stress conditions. These
mechanisms highlight the multifactorial nature of resistance
and the importance of monitoring such mutations in clinical
surveillance.

A limitation of our study is that, although we identified mu-
tations potentially associated with resistance, such as in the ompC
and rpoC genes, we did not experimentally validate their functional
impact using gene knockout or complementation assays. Although
these experiments would provide functional confirmation, our pri-
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mary objective was to identify mutational events potentially re-
lated to FDC and CZA resistance in clinical isolates with KPC vari-
ants, employing genomic surveillance and comparative sequence
analysis. Nevertheless, our findings underscore the need for future
research to determine the functional impact of these mutations on
the resistance phenotype.

These findings collectively underscore the multifactorial nature
of cefiderocol resistance in KPC-producing Enterobacterales. The
mutations identified in ompC, rpoC, dksA, and cirA affect distinct
but complementary cellular processes that, together, compromise
FDC efficacy. The disruption of ompC, a major outer membrane
porin, likely reduces passive S-lactam influx, diminishing intracel-
lular antibiotic concentrations [60]. Similarly, the inactivation of
cirA, a TonB-dependent siderophore receptor essential for cefidero-
col uptake, impairs the active transport component of FDC's “Tro-
jan horse” mechanism [56,61]. Beyond limiting entry, mutations in
global transcriptional regulators such as rpoC and dksA point to
an adaptive rewiring of bacterial physiology: rpoC mutations may
modulate global gene expression and stress responses under an-
tibiotic pressure [62], while truncations in dksA—a key regulator of
the stringent response—can alter transcriptional coordination and
reduce antimicrobial susceptibility [63].

Importantly, these mutational mechanisms may act synergis-
tically with the enzymatic activity of B-lactamases, particularly
KPC-type carbapenemases. For instance, cirA inactivation has been
shown to enhance cefiderocol resistance in combination with
metallo- or serine-carbapenemase production, as reduced drug in-
flux allows even modest SB-lactamase activity to produce a pro-
nounced effect [56]. This interplay between impaired uptake and
enzymatic degradation enhances the overall resistance pheno-
type. Therefore, the convergence of permeability defects, impaired
siderophore-mediated uptake, transcriptional adaptation, and S-
lactamase activity represents a robust, multilayered strategy of re-
sistance. These observations highlight the evolutionary plasticity of
Enterobacterales under antibiotic pressure and underscore the im-
portance of integrating genomic surveillance with phenotypic anal-
ysis to monitor emerging resistance determinants of clinical rele-
vance.

4. Conclusion

This study highlights the complex genetic landscape of KPC
variants and the emergence of collateral resistance to both FDC,
FPZ and ETP/ZID. Notably, several variants, particularly those har-
bouring mutations in critical regions such as the Q-loop and the
270-loop, contributed to high levels of resistance to CZA and FDC.
Collateral resistance to FPZ was observed to a lesser extent, specifi-
cally among variants with mutations in the 270-loop. The detection
of collateral resistance to both antibiotics in strains that had not
been previously exposed to these drugs is particularly concerning,
as it suggests the potential for resistance to develop even without
selective pressure from these antibiotics. Additionally, our findings
revealed spontaneous mutations in FDC-resistant subpopulations,
including previously known mutations in the cirA gene as well
as novel mutations not previously associated with FDC resistance.
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This underscores the importance of continuous monitoring of KPC
variants, especially in clinical settings, to prevent further spread
of resistance and to develop more effective treatment strategies
as KPC allelic variants may influence susceptibility profiles, partic-
ularly regarding their response to novel B-lactam agents. Under-
standing the molecular mechanisms driving resistance will be cru-
cial for managing and controlling the spread of these multidrug-
resistant pathogens. One limitation of this study is the geographic
restriction of the isolate collection to Argentina. While our study
provides critical insights into regional trends and the local evo-
lution of KPC variants, we are aware that the presented results
may not illustrate the complete diversity in other global contexts.
The predominance of specific KPC alleles and resistance mecha-
nisms may vary by region and may be influenced by local antibi-
otic use patterns, healthcare practices, and transmission dynamics.
Therefore, validation of our findings across broader geographic ar-
eas and with larger isolate sets is necessary to determine the ob-
served resistance profiles and the evolutionary pathways among
KPC-producing K. pneumoniae worldwide.

The optimisation of antimicrobial therapies based on local resis-
tance patterns together with synergy testing may enhance treat-
ment efficacy and prevent further selection of resistant subpopu-
lations. Additionally, routine molecular surveillance of circulating
KPC variants can help identify resistance trends early and guide
empirical therapy decisions. Integrating antimicrobial stewardship
programs with genomic surveillance may assist in reducing selec-
tive pressure and preserving the efficacy of last-line agents.
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