ELSEVIER

Contents lists available at ScienceDirect

Journal of Global Antimicrobial Resistance

journal homepage: www.elsevier.com/locate/jgar

Emerging resistance to novel β -lactam β -lactamase inhibitor combinations in *Klebsiella pneumoniae* bearing KPC variants

Mase Hamza^{a,#}, German M. Traglia^{b,#}, Lucia Maccari^c, Sonia Gomez^c, Maria Belen Sanz^c, Usman Akhtar^a, Vyanka Mezcord^a, Jenny Escalante^a, Alejandra Corso^c, Cecilia Rodriguez^{a,d}, Christopher R. Bethel^e, Gauri G. Rao^f, Marcelo E. Tolmasky^a, David Paterson^g, Robert A. Bonomo^{e,h,i}, Fernando Pasteran^c, Maria Soledad Ramirez^{a,*}

- ^a Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- b Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
- ^c National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
- ^d Centro de Referencia para Lactobacilos (CERELA), CONICET, Tucuman, Argentina
- e Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- ^f University of Southern California, Los Angeles, USA
- g Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- h Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- ¹CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA

ARTICLE INFO

Article history: Received 28 February 2025 Revised 5 July 2025 Accepted 8 July 2025 Available online 14 July 2025

Editor: S Stefano Stracquadanio

Keywords: KPC Ceftazidime/avibactam Cefiderocol Zidebactam Collateral resistance

ABSTRACT

Objective: Klebsiella pneumoniae carbapenemase (KPC) variants, predominantly KPC-2 and KPC-3, are significant global resistance mechanisms, conferring resistance to many β -lactams, including carbapenems, while remaining susceptible to ceftazidime-avibactam (CZA). Recently, new KPC variants have developed resistance to CZA through mutations, insertions, or deletions in regions such as the Ω -loop, 240-loop (237–243 aa), and 270-loop (266–275 aa). This study investigated collateral resistance to cefiderocol (FDC) and cefepime/zidebactam (FPZ) in isolates with these mutations.

Methods: Fifteen clinical KPC-producing Klebsiella spp. isolates representing 15 distinct variants were analysed. Antimicrobial susceptibility testing determined the MICs for CZA, carbapenems, FDC, FPZ, and other antibiotics. Synergy between CZA and FDC was assessed. Whole-genome sequencing (WGS) was used to identify resistance-related mutations.

Results: CZA resistance was confirmed in 12/15 variants. Collateral resistance to FDC occurred in eight isolates, with five exhibiting spontaneous resistant subpopulations. Six FDC-resistant strains had mutations in the 270-loop (266–275 aa). FPZ resistance was seen in three KPC variants, especially those with mutations in the 270-loop, though many Ω -loop and 240-loop (237–243 aa) mutants remained susceptible. WGS of FDC-resistant subpopulations revealed additional mutations in *ompC*, *rpoC*, *dksA*, and *cirA*. *Conclusions*: Emerging CZA-resistant KPC variants often exhibit collateral FDC resistance, with FPZ seen less frequently. Mutations in bla_{KPC} , cirA, and other genes contribute to resistance. Understanding these emerging resistant patterns linked with new KPC variants is crucial to inform therapeutic decisions, as emerging resistance may limit last-line treatment options in clinical settings.

© 2025 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Klebsiella pneumoniae carbapenemase (KPC) variants, specifically KPC-2 and KPC-3, have gained significant global prevalence, particularly in K. pneumoniae isolates [1–3]. These two variants are

E-mail address: msramirez@fullerton.edu (M.S. Ramirez).

^{*} Corresponding author: Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA

[#] Both authors have equal contribution to the work.

the most prevalent variants worldwide, particularly in North and South America, Europe, and parts of Asia [4-6]. The global dissemination of KPC-2 and KPC-3 underscores the importance of continuous molecular surveillance, as emerging mutations within these variants can alter susceptibility profiles to newly combinations of β -lactam/ β -lactamase inhibitor [1,3,7]. KPC-2 and KPC-3 confer resistance to most β -lactams, including carbapenems, but remain susceptible to newer β -lactam/ β -lactamase inhibitors like ceftazidime-avibactam (CZA). However, since the introduction of CZA, numerous KPC variants resistant to this combination have emerged [2,3]. In these KPC variants, mutations, insertions, and/or deletions have been identified in distinct regions of KPC β -lactamase. Mutational "hot spots" associated with resistance to CZA are located in specific regions: (1) the Ω -loop (residues 164 to 179, which border the lower part of the catalytic pocket), (2) the 240-loop (amino acids 237 to 243. adjacent to the conserved KTG motif and defining the right side of the active site), and (3) the 270-loop (amino acids 266 to 275, positioned further from the active site between β strand 5 and the α 11 helix) [3,8-10].

The emergence of ceftazidime-avibactam resistance in KPC-producing *K. pneumoniae* has been associated with mutations in these critical structural regions. Recent studies have described novel KPC variants, such as KPC-189 and KPC-197, which confer resistance to CZA through modifications in these sites [11,12]. Additionally, the KPC-74 variant has been identified as a CZA-resistant enzyme that emerged during treatment, highlighting the ongoing evolution of KPC enzymes under selective pressure [13]. Understanding the effects of these substitutions is essential for tracking the evolution and spread of KPC variants resistant to CZA and its collateral resistance to other antibiotics, such as cefiderocol (FDC) and cefepime/zidebactam (FPZ).

Published literature have reported the occurrence of collateral resistance to FDC in few KPC variants, including KPC-31, KPC-33, KPC-62, and novel variants like KPC-109 and KPC-203 (Table S1). The concept of "collateral resistance" has been described in the literature as the unintended resistance to one antibiotic due to selective pressure exerted by another, even when they do not share the same direct target [14,15]. Specifically, mutations in bla_{KPC} associated with CZA resistance have been linked to structural changes in the enzyme that impact its interaction with other β -lactams, including FDC [16]. Similarly, porin alterations-often secondary to β -lactamase evolution—can restrict FDC uptake, further supporting the collateral resistance phenomenon [17]. Most of these variants exhibiting FDC collateral resistance have substitutions in the Ω -loop region, significantly affecting the hydrolysis of both antibiotics and contributing to FDC collateral resistance. Notably, KPC-109, a variant of KPC-3, was identified in a clinical isolate (NE368) with a six-amino acid insertion in the 270-loop region, mediating resistance to CZA and FDC [18].

To our knowledge, collateral resistance to FPZ and cefepime/taniborbactam in clinical isolates has not been reported in the literature. The aim of our present study is to describe the occurrence of collateral resistance to FDC and FPZ in *Klebsiella* clinical isolates harboring various KPC variants (n=15) in the three main specific regions.

2. Materials and methods

2.1. Bacterial strains

A total of 37 out of 175 *Klebsiella* spp. clinical isolates harbored a KPC variant distinct from KPC-2 or KPC-3. A representative isolate from each variant was selected for this study. A total of fifteen representative selected KPC-producing *Klebsiella* spp. clinical

isolates, not epidemiologically related and collected from various regions in Argentina over the span of four years (2019–2023), were included (Table S2). Among these isolates, 15 KPC variants were included (Table 1 and Fig. 1). The *K. pneumoniae* ATCC reference strains BAA1705 (KPC-2 producer) and 13,883 (susceptible) were also tested as reference.

2.2. Antimicrobial susceptibility testing (AST)

The minimum inhibitory concentrations (MICs) for CZA, meropenem (MEM), imipenem (IMP), cefepime (FEP), zidebactam (ZID), FPZ, ertapenem (ETP), ertapenem/zidebactam (ETP/ZID*), imipenem/relebactam (I/R), and meropenem/varbobactam (M/V) were determined using broth microdilution methods and/or commercial E-strips (Liofilchem S.r.l., Roseto degli Abruzzi, Italy) in accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines. For testing FDC susceptibility, commercial E-strips (Liofilchem S.r.l., Roseto degli Abruzzi, Italy) and broth microdilution with iron-depleted cation-adjusted Mueller-Hinton medium as the reference method were used. All procedures were carried out in accordance with the manufacturer's instructions and met the standards of CLSI [19] and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (https://www.eucast.org/clinical_breakpoints).

Resistant subpopulations within the inhibition ellipse zones of FDC were selected for further studies and whole genome sequence analysis. Stocks of the FDC-resistant subpopulations were stored at -80 C and the stability of the FDC resistance was determined.

For FPZ categorisation, the CLSI FEP breakpoint was used. Synergy between CZA and FDC was performed in resistant and heteroresistant strains using MTS Synergy Application System (Liofilchem S.r.l., Roseto degli Abruzzi, Italy). The concentration ranges used for the combination were 0.016–256 µg/mL in the presence of a fixed concentration of avibactam (4 µg/mL) for CZA and 0.016–256 µg/mL for FDC. Synergy was evaluated using the fractional inhibition concentration index (FICI) as previously described [20]. Interpretation of FICI values where FICI \leq 0.5 indicates synergy, >0.5-1.0 additive effect, >1.0-4.0 indifference, and >4.0 antagonism. Quality control strains, such as Escherichia coli ATCC 25,922 and the K. pneumoniae ATCC 13,883 strains were included in the experiments. Each strain was tested at least in duplicates.

2.3. Whole genome sequencing analysis

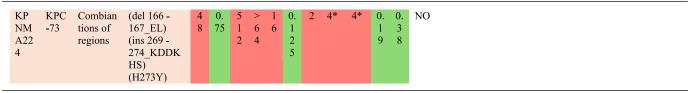

The genomic DNA extraction of parental strain and intra halo colonies was performed using Wizard Promega kit (Promega, Madison, WI, USA). The Genomic sequencing was done using NovaSeq X Plus, producing 2 × 151 bp paired-end reads. To ensure sequence quality, FASTQC software analysis (https://www. bioinformatics.babraham.ac.uk/projects/fastqc/) was performed, followed by trimming and filtering using Trimmomatic software (version: 0.40, ILLUMINACLIP: TrueSeq3-PE.fa.2:30:10; LEADING:3; TRAILING:3; SLIDINGWINDOW: 4:15; MINLEN:36) [21]. De novo sequence assembly was conducted using SPAdes (version: 3.15.4, default parameters) [22] and the quality was subsequently evaluated using QUAST (version: 5.2.0) [23]. Genome annotation was performed through PROKKA (version 1.14.5) [24], while variant calling was carried out using the breseq and gdtools software packages (version: 0.38.1, consensus mode, default parameters) [25] . Recombination regions were identified and removed using Gubbins software (version: 3.3.0, default parameters) [26]. Plasmid identification was performed using PlasmidFinder v2.1 [27]. The copy number gene (bla_{KPC}) was assessed using CCNE tool [28]. The Whole Genome Shotgun project of KPNMA215, KP-

Table 1 KPC variants strains, molecular and phenotypic characteristics.

			ii and phenotypic					ibito	ory (Conc	entra	ation (mg/I	۲)	Het ero resi
Stra in ID	KPC vari ant	blaKPC specific region	Mutation detected	C Z A	F D C	F E P	Z I D	F P Z	I M P	M E M	E T P	ET P/Z ID*	I/ R	M / V	sta nce to FD C
KP NM A21 9 KP	KPC -25		ins 166 - 167_EL	0. 5	<0 .0 16	5 1 2	> 6 4	0 . 2 5	0. 5	0. 0 2 3 0.	0. 09 4*	0.0 16*	0. 1 2 5 0.	0. 0 2 3 0.	NO
NM A21 8 KP	KPC -165		N170D	0. 5	<0 .0 16	5 1 2	> 6 4	4	0. 2 5	0 6 4	0. 04 7	No gro wth	1 2 5	0 2 3 0.	NO
NM A21 3	KPC -160	Omega- loop	del 166 - 167_EL	2	0. 38	> 6 4 >	1	1	0. 7 5	0. 7 5	0. 75	0.7 5	0. 2 5	0 6 4	NO
KA MA 222 KP	KPC -57		D179V	6 4	6	5 1 2	> 6 4	2	3	0. 7 5	0. 25	0.2 5	0. 1 9	0. 2 5	YE S
NM A22 0 KP	KPC -33		D179Y	3 2	12	6 4 >	> 6 4	2	0. 5	4	12	12	0. 2 5 0.	0. 7 5	NO
NM A22 7 KP	KPC -96	Loop 240 (237–	Y241N	8	0. 5	5 1 2	> 6 4	1	0. 5	2	1	No gro wth	0. 0 9 4	0. 2 5 0.	YE S
NM A21 2	KPC -14	243)	del_242- 243_GT	6 4	0. 75	> 6 4	> 6 4	1	0. 7 5	1 2 5	0. 19 *	0.1 25*	0. 1 9	0 6 4	NO
KP NM A22 5 KP NM A21 5	KPC -80 KPC -162	Loop 270 (266– 275)	ins 267 - 270_PNK ins 264 - 270_TRAPN KD	4 8 2 4	0. 19	> 5 1 2 > 5 1 2	> 6 4 > 6 4	2	3	1	0. 38 0. 75	No gro wth	0. 1 9 0. 0 9	0. 0 3 2 0. 5	NO YE S
KP NM A21 7	KPC -164		ins 275 - 277_EAV	2 4	4	> 5 1 2	> 6 4	4	8	1	2	0.5	0. 0 3 2	0. 2 5	YE S
KP NM A21 4	KPC -161		ins 270 - 280_DDKH SEAVIAA	2 4	6	> 5 1 2 >	> 6 4	1 6	1 6	8	2*	0.1 9*	0. 7 5	1	NO
KP NM A21 6 KP	KPC -163		ins 269 - 274_KDDK HS	2 4	8	5 1 2	> 6 4	1 6	6 4	3 2	>3 2	>32	2	2	YE S
NM A22 1 KP	KPC -44		ins_261_AV YTRAPNK DDKHSE	4 8	12	5 1 2	> 6 4	4	1 2	4	1. 5	1.5	1	0. 5	NO
NM A22 8	KPC -97		ins 277 - 281_VNSEA	6 4	24	3 2	> 6 4	2	1 6	2	0. 75	0.7 5	1	0. 1 9	NO

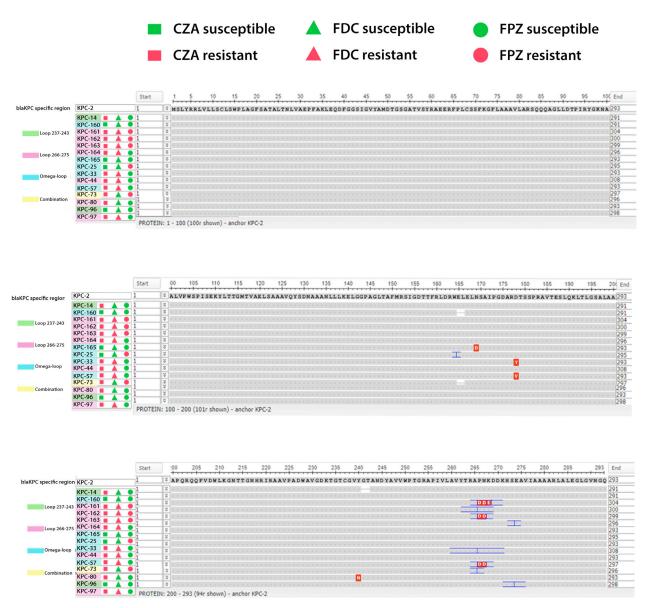

(continued on next page)

Table 1 (continued)

CZA, ceftazidime avibactam; FDC, cefiderocol; FEP, cefepime; ZID, zidebactam; FPZ, cefepime zidebactam; IMP, imipenem; MEM, meropenem; ETP, ertapenem; I/R, IMP/relebactam; M/V, MEM/varbobactam.

Green cells indicate MIC values that correspond to susceptibility according to CLSI standards. Yellow cells represent values in the Susceptible-Dose Dependent category, while red cells correspond to MIC values classified as resistant according to CLSI criteria.

Fig. 1. KPC variants aligned and compared against KPC-2. Protein sequences were retrieved from the CARD database and β-Lactamase Database. Aligned with MUSCLE, visualised by NCBI MSA viewer.

NMA216, and KAMA222 strains has been deposited in GenBank under accession numbers JBIUGI000000000, JBIUGH000000000, and JBIUGG000000000respectively. In addition, the fastq files, quality analysis files, assemblies' sequences and genome annotation files of wild-type and IHC were uploaded in Zenodo repository: https://zenodo.org/records/15122353(last accessed April 1, 2025).

3. Results and discussion

3.1. Description of CZA resistance and collateral resistance to FDC in klebsiella kpc variants strains

The CZA MICs for 15 KPC variants were determined, confirming resistance in 12 of them (Table 1). Interestingly,

Table 2Synergy between CZA and FDC for FDC resistant/hetero-resistant KPC variant strains.

	MTS synergy							
Strains	MIC CZA(FDC)	MIC FDC(CZA)	FICI	Synergy				
KPNMA214	6	2	0.58	Additive				
KPNMA215	4	0.5	0.29	Synergy				
KPNMA216	6	1	0.38	Synergy				
KPNMA217	0.75	0.38	0.13	Synergy				
KPNMA220	16	4	0.83	Additive				
KPNMA221	64	4	1.67	Additive				
KAMA222	4	0.094	0.08	Synergy				
KPNMA227	3	0.19	0.76	Additive				
KPNMA228	32	8	0.83	Additive				

FDC, cefiderocol; FICI, Fractional Inhibitory concentration index.

Synergy was defined as FICI \leq 0.5, additive effect as FICI between 0.5 and 1.

three variants with mutations in the Ω -loop–KPC-25, KPC-160, and KPC-165–remained susceptible to CZA, despite alterations in this critical region (Table 1). Prior publications of these specific KPC variants have been identified in the literature.

We next studied the collateral resistance to FDC, and we observed resistance in eight of the 15 isolates, using EUCAST breakpoint (BP) guidelines. Among the tested strains, resistant colonies with the gradient strip inhibition zone (FDC resistant subpopulations) were also observed in five strains including one that was categorised as FDC susceptible (Table 1). Six of the FDC resistant strains harbour substitutions in the 266-275 loop (Table 1). Previous reports have identified collateral resistance to FDC when substitutions in the Ω -loop are present (Table S1) [3]. In addition, these studies highlight the emergence of FDC resistance in highrisk clones such as the ST307 lineage, which has been responsible for outbreaks in hospital settings, particularly in ICUs [29,30]. KPC-62, identified in ST307 isolates, displayed resistance to both CZA and FDC, driven by the L169Q mutation within the bla_{KPC} gene. The novel KPC-203 variant found in Italy adds further complexity to the resistance landscape, as it exhibits collateral resistance to CZA and FDC due to significant modifications at key positions, including a deletion in the Ω -loop and an insertion in the 260 amino acid position [31]. The newly identified KPC-216 shows collateral resistance to both CZA and FDC. The KPC-216 variant, characterised by a lysine insertion at position 170 in the Ω -loop, was isolated from a K. pneumoniae ST101 strain and demonstrated resistance to both CZA and FDC [32]. In addition, KPC-109, a variant of KPC-3, was identified in the clinical isolate, featuring a six-amino acid insertion in the 270-loop region, which conferred resistance to both CZA and FDC [18]. Reports with mutations such as the D179Y substitution found in both KPC-31 and KPC-33, and observed in this work, illustrate the challenge of treating infections with these variants, as they lead to not only CZA resistance but also a potential for collateral resistance with FDC [33-36].

We tested the synergy between CZA and FDC in all strains exhibiting resistance or heteroresistance to both antibiotics. Synergy was observed in four strains (Table 2). Particularly, synergy was seen in the strains exhibiting intracolonies for FDC (Table 1 and 2). Evaluating the synergy between FDC and CZA, a clinically available fixed combination, addresses the need to explore relevant therapeutic options. While avibactam has previously demonstrated synergy with FDC, it is not available as a stand-alone agent for clinical use. In contrast, CZA is a formulation used in clinical practice that contains both ceftazidime and avibactam. Therefore, assessing the synergy between CZA and FDC allows for a more translationally relevant interpretation of potential combination therapies.

3.2. Impact of KPC variants in cefepime/zidebactam susceptibility

Firstly, we observed that all 15 KPC variants were resistant to cefepime (FEP), and all but one were resistant to zidebactam (ZID) (Table 1). When testing FPZ, three of the KPC variants displayed resistance (Table 1). Notably, most strains harboring mutations in the Ω -loop and the 240-loop remained susceptible to FPZ.

Only one report on FPZ has been published, where the authors evaluated the antimicrobial susceptibility of a KPC-33 variant, which exhibited susceptibility to FPZ (Shi Qingyu, 2020, DOI: 10.1093/CID/CIAA1521). Another report evaluated cefepime/taniborbactam, showing decreased susceptibility in laboratory-constructed strains with substitutions in both the $\Omega-\text{loop}$ and the 240-loop, particularly when combined with porin defects (mutations in OmpK35 and OmpK36) [37]. Our study is the first to describe collateral resistance to FPZ in KPC variants.

When compared with KPC-producing clinical isolates from the same period that lacked KPC mutations, variants exhibiting resistance to CZA were significantly more likely to be resistant to FPZ and FDC and more susceptible to carbapenem (Fisher's exact test, P < 0.05) [38]. While based on limited samples, this comparison and analysis fit for normal distribution and open new venues for future studies with larger cohorts.

As amino acid changed in the MarR, PBP-2, PBP-3, OmpK35, and OmpK36 proteins, or their respective promoters, may contribute to the FDC and FPZ resistance phenotypes [39,40]. We analyzed the sequences of the three KPC-producing strains with FPZ resistance. A comparative analysis of KPNAMA215 and KPNAMA216 against the FDC-susceptible ATCC 13,883 strain revealed no amino acid substitutions in PBP-2 and PBP-3. However, in OmpK35, only KPNAMA216 exhibited an A8T substitution, while multiple amino acid changes were observed in OmpK36 in both KPNAMA215 and KPNAMA216 (Fig. S1).

The comparison of the KAMA222 genome to *K. aerogenes* FDAARGOS 1442 (used as the reference genome) identified two amino acid substitutions in PBP-2 (G107D and A354D) (Fig. S2), as well as multiple changes in OmpK36, consistent with the findings in KPNAMA215 and KPNAMA216 (Fig. S1 and Fig. S2). In MarR, an S82G amino acid substitution was detected in KPNAMA215 and KPNAMA216, whereas KAMA222 showed no amino acid changes in this protein (Fig. S2). The presence of multiple amino acid substitutions in OmpK36 across the analyzed genomes complicates the assessment of their specific contribution to FDC and FPZ resistance. However, we acknowledge that the small sample size limits the generalisability of our findings; we cannot rule out the possibility that these alterations play a role in the observed resistance. Further analysis involving a larger number of strains and more diverse isolate collections, along with their respective isogenic strain with

not mutation on the porins is necessary to draw definitive conclusions

In conclusion, while previous reports have highlighted susceptibility to FPZ in specific KPC variants, such as KPC-33, and documented reduced susceptibility in other FEP combinations like FEP/taniborbactam under certain genetic conditions, our study is the first to describe collateral resistance to FPZ in multiple KPC variants. This finding underscores the complexity of resistance mechanisms in KPC-producing strains, particularly those involving mutations in the 270-loop (266–275 aa). Although only three FPZ-resistant isolates were identified in our collection, their characterisation provides valuable preliminary insights.

3.3. Collateral resistance to ertapenem/zidebactam (ETP/ZID) KPC variants

Among the 15 KPC variant isolates tested in this study, six were resistant to ertapenem (ETP) (Table 1). When evaluating the ETP/ZID combination, susceptibility was restored in only two isolates (Table 1). Most of the ETP-resistant strains harbored mutations in the 270-loop (266–275 aa), which may contribute to their resistance phenotype (Table 1).

Notably, one isolate (KPNMA216) exhibited the highest MIC (>32 mg/L) to ETP and ETP/ZID, and this strain possessed alterations in both OmpK35 and OmpK36 and the 270-loop (266–275 aa) mutations on the KPC (Table 1 and Fig. S1). The presence of porins mutations suggests a potential role in limiting β -lactam uptake and enhancing resistance to β -lactam/ β -lactamase inhibitor combinations.

Although all the isolates analyzed in this study come from Argentina, the resistance mechanisms identified, in particular the mutations in $bla_{\rm KPC}$ associated with resistance to CZA and its impact on FDC and FPZ, have been reported in various regions of the world, including in high-risk clones such as ST258 and ST307 [11,29,41,42]. Our findings agree with these previous studies, suggesting that the described mechanisms can be extrapolated beyond the local context.

To date, there have been no prior reports of collateral resistance to FDC and ETP/ZID in KPC-producing isolates [43–45]. This study showed the occurrence of this phenomenon for the first time and underscores the critical need for ongoing comprehensive surveillance to monitor emerging resistance patterns in multidrugresistant *Klebsiella*. The apparent lack of reports about collateral resistance to FDC and ETP/ZID in clinical isolates may reflect limited routine testing availability rather than a genuine absence of resistance. Incorporating these agents into routine antimicrobial susceptibility testing can improve the detection of emerging resistance, particularly in regions with increasing novel β -lactam/ β -lactamase inhibitor use.

3.4. Collateral susceptibility to carbapenems in K. pneumoniae KPC variants

We tested the MICs of imipenem (IMP) and meropenem (MEM) in the 15 KPC variants, and we observed in 12 strains collateral susceptibility to IMP (n=1), MEM (n=5), and both (n=6) (Table 1). MEM exhibits lower MICs compared to imipenem, indicating that it is generally less affected by resistance mechanisms, including $bla_{\rm KPC}$ variants. Collateral resistance to carbapenems was seen in strains harbouring KPC variants with substitutions in the 270-loop (266–275 aa) (Table 1). The mutations in the 270-loop region can alter the local flexibility and conformation of the active site, influencing substrate binding and catalytic efficiency, particularly in class A β -lactamases [46–48].

Previous investigations have suggested that certain substitutions in KPC variants, particularly those in the Ω -loop region,

may reduce the enzyme's carbapenemase activity, thereby restoring susceptibility to carbapenems [3,8,49,50]. For instance, variants such as KPC-31 and KPC-33, which harbor the D179Y substitution, have been shown to confer resistance to CZA while exhibiting collateral susceptibility to carbapenems. No isolates with mutations in 270-loop (266-275 aa) showed collateral susceptibility to imipenem. Although our study did not include kinetic validation, previous literature has demonstrated the functional relevance of these mutations through mechanistic approaches, showing that substitutions, insertions or deletions can contribute to CZA resistance by increasing affinity for CAZ and reducing susceptibility to AVI, ultimately affecting enzyme stability and broadening its spectrum of activity [51,3,13]. In addition, we tested imipenem/relebactam (I/R) and meropenem/varbobactam (M/V) and we observed that vaborbactam reduced meropenem MICs by more than 2 log₂-fold in 12 strains, whereas relebactam achieved the same reduction in 8 out of 15 strains. (Table 1).

Our work and previous findings highlight the complex interplay between β -lactamase mutations and antibiotic efficacy, where changes that drive resistance to one class of antibiotics may inadvertently restore susceptibility to others, such as carbapenems. This observed collateral susceptibility to carbapenems may represent a potential therapeutic opportunity in those cases where resistance to newer β -lactam/ β -lactamase inhibitors is observed. However, more research is needed to further explore this phenomenon across different KPC variants and its potential use in clinical contexts.

3.5. WGS analysis of FDC spontaneous emergent resistant cells

Spontaneous hetero-resistant colonies from three KPC variant strains were chosen for further analysis. The MIC for FDC for these resistant subpopulations showed a 2-fold increase for KPNMA215 and KPNMA216 and a 3-fold increase KPNMA222 (Table 3).

The WGS was performed and subsequent genome analyses of K. pneumoniae strains KPNMA215 and KPNMA216, along with K. aerogenes strain KAMA222 and their FDC-resistant subpopulations, revealed distinct sequence types (STs) and species classifications. KPNMA215 was classified as ST15, KPNMA216 as ST14, and KAMA222 as ST92. Common antimicrobial resistance (AMR) genes were found across all strains, including bla_{TEM}, bla_{SHV}, oqxA, oqxB, fosA6, tet(A), and tet(D), as well as aminoglycoside-modifying enzymes such as aac(6')-lb-cr and aph(6)-ld (Table S3). The presence of plasmids was identified in all three sequenced genomes. All three genomes harbour plasmids belonging to the incompatibility group IncL/M. Additionally, an IncFII-type plasmid was found in KPNAMA215 and KPNAMA222. An IncFIB-type plasmid was identified in the genomes of KPNAMA215 and KPNAMA216. Furthermore, KPNAMA215 also carries a plasmid belonging to the incompatibility group IncR. No resistance genes were identified on the plas-

In the mutational analysis of the FDC-resistant subpopulation IHC215, a mutation was detected in the *ISSod9* transposase, which plays a role in the movement of genetic elements and may facilitate the horizontal transfer of resistance genes. Additionally, a mutation was found in the rpoC gene, which encodes the β -subunit of DNA-directed RNA polymerase. Mutations in rpoC have been associated with transcriptional accuracy and stress adaptation, which may contribute to bacterial survival under antibiotic pressure by modulating global gene expression. The mutation identified in rpoC in IHC215 may alter RNA polymerase function and global gene expression patterns, ultimately reducing susceptibility to FDC (Table 3 and Table S4).

For KPNMA216 FDC-resistant subpopulation IHC216, mutations were detected in the ompC gene. This porin facilitates passive diffusion of β -lactams into the periplasmic space, and its alteration

Table 3Parental and resistant subpopulations FDC MIC and ST, and relevant mutations associated with antibiotic resistance.

		FDC MIC (mg/L)		Relevant mutations						
IHC Strains	KPC variants	Parental	Intracolony	ompC	dksA	cirA	гроС			
KPNMA215	KPC-162	4	16	wild-type	wild-type	wild-type	R220C (CGC→IGC)	ST15		
KPNMA216	KPC-163	8	32	311 K (TAG→AAG)	deletion (55/456 nt)	wild-type	wild-type	ST14		
KAMA222	KPC-57	6	48	wild-type	wild-type	G75R (GGC \rightarrow CGC)	wild-type	ST92		

FDC, cefiderocol; ST, sequence type.

likely reduces permeability, limiting antibiotic entry and contributing to resistance. Similar resistance mechanisms have been observed in clinical isolates involving OmpK35 and OmpK36 porins in K. pneumoniae [31,37,52]. The presence of the ompC mutation may contribute to the reduced susceptibility to antibiotics [37]. A mutation in dksA gene, which encodes an RNA polymerasebinding protein, was also observed, suggesting its role in regulating gene expression under stress, particularly during antibiotic exposure (Table 3 and Table S4) [53]. Specifically, a deletion of the first 93 nucleotides was identified in the dksA gene, potentially leading to a loss-of-function mutation. This truncation may impair the bacterial stress response and further modulate the expression of resistance or persistence-related genes (Table S4). Lastly, in the IHC222 subpopulation, we identified a typical mutation in the cirA gene, a gene frequently prone to mutations and previously linked to FDC resistance (Table 3 and Table S4). cirA encodes a TonB-dependent outer membrane receptor responsible for ferric-siderophore uptake. Although the mutation identified here has not been previously reported, its location and nature suggest functional inactivation. The novelty of this mutation highlights the genetic flexibility of cirA and its role as a resistance determinant. A previous case study of a hypervirulent K. pneumoniae strain co-producing KPC-2 and SHV-12 identified a truncation in cirA, leading to FDC resistance [54]. Similarly, other studies have shown that cirA mutations, when combined with the production of NDM-5 carbapenemase, result in even higher levels of FDC resistance [30,55-58]. This synergy between *cirA* inactivation and β -lactamase activity underscores the complex interplay of resistance mechanisms. Previous findings and our current work emphasise the need to monitor cirA mutations as a significant marker of FDC resistance in clinical settings, particularly in strains producing KPC-2, and KPC variants, as well as NDM-5.

The copy number of the $bla_{\rm KPC}$ gene and the associated increase in carbapenems, CZA, and β -lactamase/inhibitors resistance have been previously reported [39,52,59]. In this study, the copy number of the $bla_{\rm KPC}$ gene in both WT and IHC colonies of strains KP-NAMA215, KPNAMA216, and KAMA222 was evaluated using whole genome sequencing data and the CCNE tool. An increased $bla_{\rm KPC}$ copy number was observed in the IHC colonies of KPNAMA215 (1.52-fold changes) and KAMA222 (1.48-fold changes) compared to their respective WT colonies. In contrast, no difference in the $bla_{\rm KPC}$ copy number was detected in the IHC colonies of KP-NAMA216.

Together, our findings indicate that mutations in *cirA*, *ompC*, *rpoC*, and *dksA* play complementary roles in reducing susceptibility to FDC by affecting membrane permeability, drug uptake, and transcriptional regulation under stress conditions. These mechanisms highlight the multifactorial nature of resistance and the importance of monitoring such mutations in clinical surveillance.

A limitation of our study is that, although we identified mutations potentially associated with resistance, such as in the *ompC* and *rpoC* genes, we did not experimentally validate their functional impact using gene knockout or complementation assays. Although these experiments would provide functional confirmation, our pri-

mary objective was to identify mutational events potentially related to FDC and CZA resistance in clinical isolates with KPC variants, employing genomic surveillance and comparative sequence analysis. Nevertheless, our findings underscore the need for future research to determine the functional impact of these mutations on the resistance phenotype.

These findings collectively underscore the multifactorial nature of cefiderocol resistance in KPC-producing Enterobacterales. The mutations identified in ompC, rpoC, dksA, and cirA affect distinct but complementary cellular processes that, together, compromise FDC efficacy. The disruption of ompC, a major outer membrane porin, likely reduces passive β -lactam influx, diminishing intracellular antibiotic concentrations [60]. Similarly, the inactivation of cirA, a TonB-dependent siderophore receptor essential for cefiderocol uptake, impairs the active transport component of FDC's "Trojan horse" mechanism [56,61]. Beyond limiting entry, mutations in global transcriptional regulators such as rpoC and dksA point to an adaptive rewiring of bacterial physiology: rpoC mutations may modulate global gene expression and stress responses under antibiotic pressure [62], while truncations in dksA-a key regulator of the stringent response-can alter transcriptional coordination and reduce antimicrobial susceptibility [63].

Importantly, these mutational mechanisms may act synergistically with the enzymatic activity of β -lactamases, particularly KPC-type carbapenemases. For instance, cirA inactivation has been shown to enhance cefiderocol resistance in combination with metallo- or serine-carbapenemase production, as reduced drug influx allows even modest β -lactamase activity to produce a pronounced effect [56]. This interplay between impaired uptake and enzymatic degradation enhances the overall resistance phenotype. Therefore, the convergence of permeability defects, impaired siderophore-mediated uptake, transcriptional adaptation, and β lactamase activity represents a robust, multilayered strategy of resistance. These observations highlight the evolutionary plasticity of Enterobacterales under antibiotic pressure and underscore the importance of integrating genomic surveillance with phenotypic analysis to monitor emerging resistance determinants of clinical relevance.

4. Conclusion

This study highlights the complex genetic landscape of KPC variants and the emergence of collateral resistance to both FDC, FPZ and ETP/ZID. Notably, several variants, particularly those harbouring mutations in critical regions such as the Ω -loop and the 270-loop, contributed to high levels of resistance to CZA and FDC. Collateral resistance to FPZ was observed to a lesser extent, specifically among variants with mutations in the 270-loop. The detection of collateral resistance to both antibiotics in strains that had not been previously exposed to these drugs is particularly concerning, as it suggests the potential for resistance to develop even without selective pressure from these antibiotics. Additionally, our findings revealed spontaneous mutations in FDC-resistant subpopulations, including previously known mutations in the *cirA* gene as well as novel mutations not previously associated with FDC resistance.

This underscores the importance of continuous monitoring of KPC variants, especially in clinical settings, to prevent further spread of resistance and to develop more effective treatment strategies as KPC allelic variants may influence susceptibility profiles, particularly regarding their response to novel β -lactam agents. Understanding the molecular mechanisms driving resistance will be crucial for managing and controlling the spread of these multidrugresistant pathogens. One limitation of this study is the geographic restriction of the isolate collection to Argentina. While our study provides critical insights into regional trends and the local evolution of KPC variants, we are aware that the presented results may not illustrate the complete diversity in other global contexts. The predominance of specific KPC alleles and resistance mechanisms may vary by region and may be influenced by local antibiotic use patterns, healthcare practices, and transmission dynamics. Therefore, validation of our findings across broader geographic areas and with larger isolate sets is necessary to determine the observed resistance profiles and the evolutionary pathways among KPC-producing K. pneumoniae worldwide.

The optimisation of antimicrobial therapies based on local resistance patterns together with synergy testing may enhance treatment efficacy and prevent further selection of resistant subpopulations. Additionally, routine molecular surveillance of circulating KPC variants can help identify resistance trends early and guide empirical therapy decisions. Integrating antimicrobial stewardship programs with genomic surveillance may assist in reducing selective pressure and preserving the efficacy of last-line agents.

Funding: The authors' work was supported by NIH SC3GM125556 to MSR, 2R15 Al047115 to MET, R01Al146241 and R01Al170889 to GGR. This study was supported in part by funds and facilities provided by the Cleveland Department of Veterans Affairs, Award Number 1l01BX001974 to RAB from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development and the Geriatric Research Education and Clinical Centre VISN 10 to RAB. The content is solely the authors' responsibility and does not necessarily represent the official views of the National Institutes of Health or the Department of Veterans.

Declaration of competing interests: None declared.

Ethical approval: Not required.

Author Contributions: GMT, GGR, MET, RAB, FP, and MSR conceived the study and designed the experiments. MH, GMT, LM, SG, MBS, CR, UA, VK, JE, FP, and MSR performed the experiments and genomics and bioinformatics analyses. GMT, FP, CRB, GGR, DP, MET, RAB, and MSR analysed the data and interpreted the results. GMT, FP, MET, and MSR contributed reagents/materials/analysis tools. GMT, FP, GGR, CRB, AC, MET, RAB, and MSR wrote and revised the manuscript. All authors read and approved the final manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jgar.2025.07.011.

References

- [1] van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017;8:460–9.
- [2] Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440–58 table of contents.
- [3] Hobson CA, Pierrat G, Tenaillon O, Bonacorsi S, Bercot B, Jaouen E, et al. *Klebsiella pneumoniae* carbapenemase variants resistant to ceftazidime-Avibactam: an evolutionary overview. Antimicrob Agents Chemother 2022;66:e0044722.
- [4] Gonzalez-Espinosa F, Di Pilato V, Magarinos F, Di Conza J, Rossolini GM, Gutkind G, et al. Genomic characterization of carbapenemase-producing Kleb-

- siella pneumoniae ST307 revealed multiple introductions in Buenos Aires, Argentina. I Glob Antimicrob Resist 2024:37:176–8.
- [5] Jean SS, Lai CC, Ho SJ, Liu IM, Hsieh PC, Hsueh PR. Geographic variations in distributions of carbapenemase-encoding genes, susceptibilities, and minimum inhibitory concentrations of inpatient meropenem-resistant enterobacterales to ceftazidime-avibactam, meropenem-vaborbactam, and aztreonam-avibactam across four global regions: 2020-2022 data from the Antimicrobial Testing Leadership and Surveillance. Int J Antimicrob Agents 2025;66:107500.
- [6] Lopes E, Saavedra MJ, Costa E, de Lencastre H, Poirel L, Aires-de-Sousa M. Epidemiology of carbapenemase-producing *Klebsiella pneumoniae* in northern Portugal: predominance of KPC-2 and OXA-48. J Glob Antimicrob Resist 2020;22:349–53.
- [7] Liu C, Wu Y, Huang L, Zhang Y, Sun Q, Lu J, et al. The rapid emergence of ceftazidime-avibactam resistance mediated by KPC variants in carbapenem-resistant Klebsiella pneumoniae in Zhejiang Province, China. Antibiotics (Basel) 2022:11.
- [8] Taracila MA, Bethel CR, Hujer AM, Papp-Wallace KM, Barnes MD, Rutter JD, et al. Different conformations revealed by NMR underlie resistance to Ceftazidime/Avibactam and susceptibility to Meropenem and Imipenem among D179Y variants of KPC beta-lactamase. Antimicrob Agents Chemother 2022:66:e0212421.
- [9] Alsenani TA, Viviani SL, Papp-Wallace KM, Bonomo RA, van den Akker F. Exploring avibactam and relebactam inhibition of Klebsiella pneumoniae carbapenemase D179N variant: role of the Omega loop-held deacylation water. Antimicrob Agents Chemother 2023;67:e0035023.
- [10] Alsenani TA, Viviani SL, Kumar V, Taracila MA, Bethel CR, Barnes MD, et al. Structural characterization of the D179N and D179Y variants of KPC-2 beta-lactamase: omega-loop destabilization as a mechanism of resistance to ceftazidime-avibactam. Antimicrob Agents Chemother 2022;66:e0241421.
- [11] Zhang X, Xie Y, Zhang Y, Lei T, Zhou L, Yao J, et al. Evolution of ceftazidime-avibactam resistance driven by mutations in double-copy bla_(KPC-2) to bla_(KPC-189) during treatment of ST11 carbapenem-resistant *Klebsiella pneumoniae*. mSystems 2024;9:e0072224.
- [12] De la Cadena E, Mojica MF, Rojas LJ, Castro BE, Garcia-Betancur JC, Marshall SH, et al. First report of KPC variants conferring ceftazidime-avibactam resistance in Colombia: introducing KPC-197. Microbiol Spectr 2024:12:e0410523.
- [13] Li X, Quan J, Ke H, Wu W, Feng Y, Yu Y, et al. Emergence of a KPC variant conferring resistance to ceftazidime-avibactam in a widespread ST11 carbapenem-resistant Klebsiella pneumoniae clone in China. Front Microbiol 2021;12:724272.
- [14] Zwep LB, Haakman Y, Duisters KLW, Meulman JJ, Liakopoulos A, van Hasselt JGC. Identification of antibiotic collateral sensitivity and resistance interactions in population surveillance data. JAC Antimicrob Resist 2021;3:dlab175.
- [15] Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024;15:1478789.
- [16] Haidar G, Clancy CJ, Shields RK, Hao B, Cheng S, Nguyen MH. Mutations in bla_(KPC-3) that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2017;61:e02534-16.
- [17] Moon SH, Huang E. Cefiderocol resistance in Klebsiella pneumoniae is linked to SHV extended-spectrum beta-lactamase activities and functional loss of the outer membrane porin OmpK35. Microbiol Spectr 2023;11:e0349622.
- [18] Di Pilato V, Codda G, Niccolai C, Willison E, Wong JLC, Coppo E, et al. Functional features of KPC-109, a novel 270-loop KPC-3 mutant mediating resistance to avibactam-based beta-lactamase inhibitor combinations and cefiderocol. Int J Antimicrob Agents 2024;63:107030.
- [19] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Document M100-S34 2024. Wayne, PA.
- [20] Gomara M, Ramon-Garcia S. The FICI paradigm: correcting flaws in antimicrobial in vitro synergy screens at their inception. Biochem Pharmacol 2019;163:299–307.
- [21] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
- [22] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–77.
- [23] Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072-5.
- [24] Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068-9.
- [25] Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 2014;1151:165–88.
- [26] Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;43:e15.
- [27] Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–903.
- [28] Jiang J, Chen L, Chen X, Li P, Xu X, Fowler VG Jr, et al. Carbapenemase-encoding gene copy number estimator (CCNE): a tool for Carbapenemase gene copy number estimation. Microbiol Spectr 2022;10:e0100022.
- [29] Castillo-Polo JA, Hernandez-Garcia M, Morosini MI, Perez-Viso B, Soriano C, De

- Pablo R, et al. Outbreak by KPC-62-producing ST307 *Klebsiella pneumoniae* isolates resistant to ceftazidime/avibactam and cefiderocol in a university hospital in Madrid, Spain. J Antimicrob Chemother 2023;78:1259-64.
- [30] Hong H, Fan L, Shi W, Zhu Y, Liu P, Wei D, et al. Overexpression of beta-lactamase genes (bla(KPC,) bla(SHV)) and novel CirA deficiencies contribute to decreased cefiderocol susceptibility in carbapenem-resistant Klebsiella pneumoniae before its approval in China. Antimicrob Agents Chemother 2024;68:e0075424.
- [31] Amadesi S, Bianco G, Secci B, Fasciana T, Boattini M, Costa C, et al. Complete genome sequence of a *Klebsiella pneumoniae* strain carrying novel variant bla(KPC-203), cross-resistant to ceftazidime/avibactam and cefiderocol, but susceptible to carbapenems, isolated in Italy, 2023. Pathogens 2024;13(6):507.
- [32] Giufre M, Errico G, Del Grosso M, Pagnotta M, Palazzotti B, Ballardini M, et al. Detection of KPC-216, a novel KPC-3 variant, in a clinical isolate of *Klebsiella pneumoniae* ST101 Co-resistant to Ceftazidime-Avibactam and Cefiderocol. Antibiotics (Basel) 2024;13(6):507.
- [33] Zhang P, Wang J, Li Y, Shi W, Cai H, Yang Q, et al. Emergence of bla(KPC-33)-harboring hypervirulent ST463 *Pseudomonas aeruginosa* causing fatal infections in China. J Infect 2022;85:e86 –e8.
- [34] Gong G, Chen Q, Luo J, Wang Y, Li X, Zhang F, et al. Characteristics of a ceftadine/avibatam resistance KPC-33-producing *Klebsiella Pneumoniae* strain with capsular serotype K19 belonging to ST15. J Glob Antimicrob Resist 2023;35:159–62.
- [35] Faccone D, de Mendieta JM, Albornoz E, Chavez M, Genero F, Echegorry M, et al. Emergence of KPC-31, a KPC-3 variant associated with ceftazidime-avibactam resistance, in an extensively drug-resistant ST235 Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 2022;66:e0064822.
- [36] Birgy A, Nnabuife C, Palzkill T. The mechanism of ceftazidime and cefiderocol hydrolysis by D179Y variants of KPC carbapenemases is similar and involves the formation of a long-lived covalent intermediate. Antimicrob Agents Chemother 2024:68:e0110823.
- [37] Satapoomin N, Dulyayangkul P, Avison MB. Klebsiella pneumoniae mutants resistant to ceftazidime-avibactam plus aztreonam, imipenem-relebactam, meropenem-vaborbactam, and cefepime-taniborbactam. Antimicrob Agents Chemother 2022;66:e0217921.
- [38] Echegorry M, Marchetti P, Sanchez C, Olivieri L, Faccone D, Martino F, et al. National multicenter study on the prevalence of carbapenemase-producing Enterobacteriaceae in the post-COVID-19 era in Argentina: the RECAPT-AR study. Antibiotics (Basel) 2024:13.
- [39] Gaibani P, Bianco G, Amadesi S, Boattini M, Ambretti S, Costa C. Increased bla(KPC) copy number and OmpK35 and OmpK36 porins disruption mediated resistance to imipenem/relebactam and meropenem/vaborbactam in a KPC-producing Klebsiella pneumoniae clinical isolate. Antimicrob Agents Chemother 2022;66:e0019122.
- [40] Yousefi B, Kashanipoor S, Mazaheri P, Alibabaei F, Babaeizad A, Asli S, et al. Cefiderocol in combating carbapenem-resistant *Acinetobacter baumannii*: action and resistance. Biomedicines 2024;12(11):2532.
- [41] Arcari G, Cecilia F, Oliva A, Polani R, Raponi G, Sacco F, et al. Genotypic evolution of Klebsiella pneumoniae sequence type 512 during ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol treatment, Italy. Emerg Infect Dis 2023;29:2266–74.
- [42] Blanco-Martin T, Gonzalez-Pinto L, Aja-Macaya P, Rodriguez-Pallares S, Sanchez-Pena L, Gato E, et al. Mutant prevention concentrations, in vitro resistance evolution dynamics, and mechanisms of resistance to imipenem and imipenem/relebactam in carbapenem-susceptible Klebsiella pneumoniae isolates showing ceftazidime/avibactam resistance. Antimicrob Agents Chemother 2024;68:e0112024.
- [43] Mushtaq S, Vickers A, Chaudhry A, Woodford N, Livermore DM. Inoculum effects of cefepime/zidebactam (WCK 5222) and ertapenem/zidebactam (WCK 6777) for enterobacterales in relation to beta-lactamase type and enhancer effect, as tested by BSAC agar dilution. J Antimicrob Chemother 2022;77:1916–22.
- [44] Gethers M, Chen I, Abdelraouf K, Nicolau DP. In vivo efficacy of WCK 6777 (ertapenem/zidebactam) against carbapenemase-producing Klebsiella pneumoniae in the neutropenic murine pneumonia model. J Antimicrob Chemother 2022:77:1931–7.

- [45] Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of ertapenem/zidebactam (WCK 6777) against problem enterobacterales. J Antimicrob Chemother 2022;77:2772–8.
- [46] Drawz SM, Bethel CR, Hujer KM, Hurless KN, Distler AM, Caselli E, et al. The role of a second-shell residue in modifying substrate and inhibitor interactions in the SHV beta-lactamase: a study of ambler position Asn276. Biochemistry 2009:48:4557-66.
- [47] Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC beta-lactamases. Front Mol Biosci 2018:5:16.
- [48] Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Take-bayashi Y, et al. beta-lactamases and beta-lactamase inhibitors in the 21st century. J Mol Biol 2019;431:3472–500.
- [49] Papp-Wallace KM, Barnes MD, Taracila MA, Bethel CR, Rutter JD, Zeiser ET, et al. The effectiveness of Imipenem-Relebactam against Ceftazidime-Avibactam resistant variants of the KPC-2 beta-lactamase. Antibiotics (Basel) 2023;12(5):892.
- [50] Niu S, Chavda KD, Wei J, Zou C, Marshall SH, Dhawan P, et al. A ceftazidime-avibactam-resistant and carbapenem-susceptible Klebsiella pneumoniae strain harboring bla(KPC-14) isolated in New York City. mSphere 2020;5:e00775-20.
- [51] Findlay J, Poirel L, Juhas M, Nordmann P. KPC-mediated resistance to ceftazidime-avibactam and collateral effects in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021;65:e0089021.
- [52] Sun L, Li H, Wang Q, Liu Y, Cao B. Increased gene expression and copy number of mutated bla(KPC) lead to high-level ceftazidime/avibactam resistance in Klebsiella pneumoniae. BMC Microbiol 2021;21:230.
- [53] Maharjan RP, Sullivan GJ, Adams FG, Shah BS, Hawkey J, Delgado N, et al. DksA is a conserved master regulator of stress response in *Acinetobacter baumannii*. Nucleic Acids Res 2023;51:6101–19.
- [54] Lan P, Lu Y, Liao W, Yu Y, Fu Y, Zhou J. Cefiderocol-resistant hypervirulent Klebsiella pneumoniae with CirA deficiency and co-production of KPC-2 and SHV-12. Clin Microbiol Infect 2024.
- [55] Jousset AB, Poignon C, Yilmaz S, Bleibtreu A, Emeraud C, Girlich D, et al. Rapid selection of a cefiderocol-resistant *Escherichia coli* producing NDM-5 associated with a single amino acid substitution in the CirA siderophore receptor. J Antimicrob Chemother 2023;78:1125–7.
- [56] McElheny CL, Fowler EL, Iovleva A, Shields RK, Doi Y. In vitro evolution of cefiderocol resistance in an NDM-producing *Klebsiella pneumoniae* due to functional loss of CirA. Microbiol Spectr 2021;9:e0177921.
- [57] Nurjadi D, Kocer K, Chanthalangsy Q, Klein S, Heeg K, Boutin S. New Delhi metallo-beta-lactamase facilitates the emergence of cefiderocol resistance in Enterobacter cloacae. Antimicrob Agents Chemother 2022;66:e0201121.
- [58] Mezcord V, Traglia GM, Pasteran F, Escalante J, Lopez C, Wong O, et al. Characterisation of cefiderocol-resistant spontaneous mutant variants of *Klebsiella pneumoniae*-producing NDM-5 with a single mutation in cirA. Int J Antimicrob Agents 2024;63:107131.
- [59] Chen H, Li N, Wang F, Wang L, Liang W. Carbapenem antibiotic stress increases bla(KPC) (-2) gene relative copy number and bacterial resistance levels of Klebsiella pneumoniae. J Clin Lab Anal 2022;36:e24519.
- [60] Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL, et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother 2011;55:1485–93.
- [61] Simner PJ, Beisken S, Bergman Y, Ante M, Posch AE, Tamma PD. Defining baseline mechanisms of cefiderocol resistance in the enterobacterales. Microb Drug Resist 2021
- [62] Lee YH, Nam KH, Helmann JD. A mutation of the RNA polymerase beta' subunit (rpoC) confers cephalosporin resistance in *Bacillus subtilis*. Antimicrob Agents Chemother 2013;57:56–65.
- [63] Chawla M, Verma J, Kumari S, Matta T, Senapati T, Babele P, et al. (p)ppGpp and DksA play a crucial role in reducing the efficacy of beta-lactam antibiotics by modulating bacterial membrane permeability. Microbiol Spectr 2025;13:e0116924.