
Abstract
In this work we assessed the environmental factors associated

with the spatial distribution of a cutaneous leishmaniasis (CL) out-
break during 2015-2016 in north-eastern Argentina to understand

its typical or atypical eco-epidemiological pattern. We combined
locations of human CL cases with relevant predictors derived from
analysis of remote sensing imagery in the framework of ecological
niche modelling and trained MaxEnt models with cross-validation
for predictors estimated at different buffer areas relevant to CL
vectors (50 and 250 m radii). To account for the timing of biolog-
ical phenomena, we considered environmental changes occurring
in two periods, 2014-2015 and 2015-2016. The remote sensing
analysis identified land cover changes in the surroundings of CL
cases, mostly related to new urbanization and flooding. The dis-
tance to such changes was the most important variable in most
models. The weighted average map denoted higher suitability for
CL in the outskirts of the city of Corrientes and in areas close to
environmental changes. Our results point to a scenario consistent
with a typical CL outbreak, i.e. changes in land use or land cover
are the main triggering factor and most affected people live or
work in border habitats.

Introduction
Leishmaniases are globally distributed parasitoses caused by

Trypanosomatidae of the genus Leishmania that are transmitted by
Phlebotominae insects. This group of diseases is reported as the
highest increase in prevalence among the neglected tropical dis-
eases (NTDs) between 1990 and 2016 (Hotez, 2018). In the
Americas the main clinical forms include visceral leishmaniasis
(VL) with confirmed transmission in 12 countries at an incidence
of ~3500 cases/year over the last 20 years, and cutaneous (CL) -
mucocutaneous leishmaniasis (MCL), which is endemic in 18
countries with ~55,000 cases/year in the same period (PAHO,
2019). In Honduras, Nicaragua and El Salvador, the latter figure
includes around 810 cases during 2018 of an atypical form (ACL),
a disease caused by the VL parasite transmitted by its phle-
botomine vector, and usually presenting as a papular clinical
expression that differs from the ulcerated one of the typical CL
(Sandoval et al., 2018).

In the South Cone of South America, CL has been endemic
since pre-hispanic times, with episodic outbreaks, generally asso-
ciated with environmental changes and border effects in rural and
peri-urban landscapes (Quintana et al., 2012; Salomón et al.,
2016; Salomón, 2019). VL, on the other hand, appeared and
spread in the region only during the last decades, and as an urban
disease. After its initial introduction in a city, VL produces a pat-
tern of human cases scattered in time and space or a persistent
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plateau of infection (Salomón et al., 2015; Bruhn et al., 2018).
Consistent with the transmission scenarios described above, spo-
radic CL outbreaks have been reported in north-eastern Argentina,
as well as the recent emergence of urban VL. Peaks in human inci-
dence of CL due to L. braziliensis have shown to be associated
with changes in land use and people inhabiting forest edges, with
Nyssomia neivai (previously Lutzomyia intermedia) and Ny. whit-
mani as main vectors (Salomón et al., 2016). Human VL due to L.
infantum is associated with urban environments, with Lu. longi-
palpis as vector and dogs as reservoir (Salomón et al., 2008;
Fernandez et al., 2013). 

Corrientes, a city in north-eastern Argentina, shows the same
CL and VL epidemiological patterns with Lu. longipalpis as vec-
tor in the urban area since 2008 and Ny. neivai in the peri-urban
outskirts and rural landscapes (Salomón et al., 2009). During
2015-2016 the health authorities of the province reported a CL
outbreak to the National Surveillance System (Table 1). However,
recent research suggests that this was an outbreak due to the par-
asite that produces VL, i.e. an atypical urban CL outbreak despite
the typical CL presentation, and that it could be the case of other
CL outbreaks as well (Acosta-Soto et al., 2020). This new sce-
nario would imply a significant increase in costs for leishmaniasis
control programmes in terms of differential diagnosis and follow
up of potential lethal visceralization of the human cases.
Clarifying this issue is thus of great interest for public health

strategies and individual case management. To elucidate the typi-
cal or atypical epidemiological pattern of the CL outbreak in the
city of Corrientes, we used satellite imagery to detect and map
environmental changes, as well as to derive different environmen-
tal variables that we then combined with geo-coded CL cases in
the framework of ecological niche modelling (ENM) to retrospec-
tively model and map the risk of CL and discuss the results from
an eco-epidemiological point of view.

Materials and methods

Study area
The study was carried out in the city of Corrientes (27°28’08’

S, 58°49’50’ W) and its surroundings in Corrientes Province,
Argentina (Figure 1). The city is located on the eastern shore of the
Paraná River and belongs to the Chaco ecoregion (Arana et al.,
2017). The urban area is approximately 60 km2 and has 328,868
inhabitants (INDEC, 2010) and has a complex and heterogeneous
urban landscape, which includes a downtown area with high popu-
lation density and a well-developed infrastructure that includes
peri-urban areas with patches of houses mixed with green areas
(agricultural lands, forest remnants and secondary vegetation). The
study area included Riachuelo, a small rural town with almost

                   Article

Table 1. Leishmaniasis cases in Corrientes Province, Argentina in the period 1955-2019.

                                                                                                             Period
Disease              1955-74         1975-94        1995-04         2013        2014             2015           2016           2017             2018          2019

CL                                    2.2                        6.8                      11.7                      8                   4                         70                     49                     12                        9                      8
MCL                                  *                           *                         *                        0                   0                          0                       0                       0                         3                      2
VL                                      0                           0                          0                        8                   5                          4                       2                       0                         0                      0
CL, cutaneous leishmaniasis; MCL, mucocutaneous leishmaniasis; VL, visceral leishmaniasis. *No discrimination between CL and MCL. Data obtained from the National Surveillance System
(https://www.argentina.gob.ar/salud/epidemiologia/boletines) either by period (average cases/year) or by year.

Figure 1. City of Corrientes and surrounding area. A) Red dots are the cutaneous leishmaniasis cases from the period 2015-2016 report-
ed to Corrientes Health authorities (n=25). B) Red dots are the cases digitized from the report by Acosta-Soto et al. (2020) (n=74 of
81 reported by the authors).
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4000 inhabitants (INDEC, 2010), situated south of Corrientes City.
In general, the area has a subtropical climate without dry seasons.
The temperature varies from 8 to 21°C in the winter and from 20
to 32°C in the summer. Precipitation is abundant throughout the
year with annual values in the range 1400-1900 mm (SMN, 2020). 

Human cases and vector data
We used two sources of CL human cases: one obtained jointly

with agents of the Leishmaniasis Program in Corrientes Province
during 2015-2016, and another obtained through digitization from
a recently published map (Acosta-Soto et al., 2020). Both datasets
correspond to the same outbreak, but they were treated separately
since we did not have access to more detailed information as to
perform a proper anamnesis and check for repeated cases. Our
original dataset consisted of 25 human cases reported as CL to the
health authorities in Corrientes Province that were confirmed
through visits to the patients’ residences and characterized by the
standardized clinical description and diagnosis procedures
(Ministerio de Salud, 2007). All patients had typical CL ulcers and
molecular analyses performed on samples from three patients con-
firmed L. braziliensis as the causative agent (H. Lucero, pers.
com.). Furthermore, phlebotomine sampling was carried out in
February 2017 for three consecutive nights using one CDC-like
light traps active for 12 hours around the patient residences. 

Acosta-Soto et al. (2020) reported 80 CL cases from the same
outbreak but did not provide a list of coordinates, so to be able to
compare the models with both datasets, we geo-referenced their
map with satellite images and Open Street map data (https://
planet.osm.org and https://www.openstreetmap.org) and digitized
the CL cases reported. Since there seemed to be more than one CL
case at some of the locations, we recovered 74 out of the 80 cases
they analysed. Importantly, our original 25 CL cases roughly coin-
cided in space and time with the core of the outbreak as reported
by Acosta-Soto et al. (2020).

Remote sensing data
We downloaded three Landsat 8 scenes (path 226, row 79) cor-

responding to the dates 2014/07/19, 2015/05/19 and 2016/06/22.
We selected cloud-free images roughly belonging to the same peri-
od of the year to minimize the effect of seasonal fluctuations.
Images were drawn from the United States Geological Service
(USGS) web site (https://earthexplorer.usgs.gov/) as level 1 TP
products belonging to the tier 1 collection (Figure 1 in the
Appendix). 

The Landsat 8 images were atmospherically corrected to
obtain surface reflectance. Since images showed no evident dis-
placement across dates, co-registration was not needed. For each
date we estimated several spectral indices: the normalized differ-
ence vegetation index (NDVI), the enhanced vegetation index
(EVI), the normalized difference water index (NDWI), the land
surface water index (LSWI) and the normalized difference built-up
index (NDBI). These indices are commonly used to characterize
vegetation cover, water content in plants and/or over surface and
built-up features. Furthermore, we obtained different texture mea-
sures, such as contrast, correlation, variance and entropy based on
EVI, LSWI and NDBI. Texture refers to the relation of grey level
values among neighbouring pixels.

Data processing
All derived environmental information was used as input to

perform a supervised classification using the Random Forest

approach (Breiman, 2001), one of the most robust and commonly
used machine learning classifiers. To perform supervised classifi-
cations for each date, we selected ground truth samples for 5 dif-
ferent classes: urban, water, bare soil, forest and low vegetation.
Since some classes are subject to yearly changes, the ground truth
data was obtained separately for each year (Table 1 in the
Appendix). Sample selection was aided by very high resolution
(VHR) imagery from Google® and Bing® within QGIS 3.10
(QGIS Development Team, 2019). The Random Forest classifier
was run with 600 trees and default maximum number of features.
The data were randomly split in five-folds to perform cross valida-
tion. All variables were standardized to a 0-1 scale before running
the classification. In all cases, we obtained overall accuracy (OA)
values in the range of 0.90-0.95. The F1 score for land cover class-
es varied between 0.81 and 0.98; the lowest values corresponding
to urban and low vegetation in 2015 (Figure 2 in the Appendix).

To identify land cover changes we applied the Change Vector
Analysis (CVA) algorithm (Malila, 1980), for which we used the
Brightness and Greenness features of the tasselled cap transform
performed over Landsat 8 bands (Liu et al., 2014). This analysis
results in a map of angles and a map of magnitude of change,
which are then combined into four classes from which we estimat-
ed distance maps. Paired t-tests were performed to confirm that the
environment as seen by NDVI, LSWI and NDBI was indeed dif-
ferent among years where environmental changes were detected.

To extract environmental variables for sites with reported CL
human cases, we created buffers with 50 and 250 m radii following
Quintana et al. (2020). We estimated average and standard devia-
tion (SD) for all variables described above as well as the most
common type of change, the number of different land cover classes
and the most common land cover class. Moreover we estimated the
Simpson diversity index (Simpson, 1949) and the interspersion, a
measure that reflects the percentage of cells that differ from the
central cell or pixel. All remote sensing and processing using geo-
graphical information systems (GIS) were done and automated in
GRASS GIS 7.8 (GRASS Development Team, 2020). All the vari-
ables derived from satellite images processing are described in
more detail in Table 2 under Appendix.

Modelling and analysis
MaxEnt is a machine learning method that estimates the poten-

tial geographic distribution of biological phenomena by finding the
probability distribution of maximum entropy (closest to uniform),
subject to the constraint of the expected values of the environmen-
tal predictors (Phillips et al., 2006; 2017). MaxEnt was developed
for presence-only data by contrasting presences against back-
ground locations (Phillips et al., 2006; Merow et al., 2013), and
has been shown to outperform other algorithms, even when used
with few positive records (Hernandez et al., 2006; van Proosdij et
al., 2016). This algorithm has been widely used for species distri-
bution modelling, but also for risk prediction of infectious diseases
(Joshi and Miller, 2021), including CL (Chavy et al., 2019).

We used MaxEnt 3.4.1 (https://biodiversityinformatics.amnh.
org/open_source/maxent/) to model the distribution of CL cases as
a function of environmental variables and generate maps of
favourable conditions for CL occurrence and potential risk. Since
cases spanned over a period of approximately two years and we
assumed that they are triggered by previous environmental
changes, we grouped the environmental variables in four sets
according to buffer size and year, i.e. 2014-50 m, 2014-250 m,
2015-50 m and 2015-250 m. Sets for 2014 included environmental
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changes detected between 2014 and 2015, before the CL outbreak,
and sets for 2015 included environmental changes during the out-
break between 2015 and 2016. Given that the number of variables
in each set was larger than the number of reported cases in our
dataset, we performed an a priori removal of highly correlated
variables (r>0.85) using the method proposed by Naimi et al.
(2014), i.e. identifying pairs of highly correlated variables and
removing the one with the highest variance inflation factor (VIF).
We ran the MaxEnt algorithm with the remaining variables and
with default settings (500 iterations, regularization =1 and allow-
ing linear l, quadratic q, product p and hinge h feature classes). We
used 10,000 random background points that we obtained after
masking a 300-m radius area from each CL case in both datasets.
We created 4 random folds to perform training with cross-valida-
tion. Since the datasets differed in number and location of cases,
the random background points were obtained separately. Once the
default models were fitted, we proceeded to perform feature selec-
tion. We first removed remaining correlated variables (r>0.7) via
Jackknife tests. Second, also via Jackknife tests, we removed vari-
ables with importance values lower than 10%. In both cases, the
model performance was checked with regard to removing or keep-
ing a variable and this was based on the area under the receiver
operating characteristic (ROC) curve, the AUC.

After obtaining models with the best set of important and
uncorrelated environmental variables, we used a genetic algorithm
to perform hyper-parameter tuning with optimization. This process
allows to adjust the complexity of models built with MaxEnt

through the inclusion of additional feature classes (i.e. transforma-
tions of the original predictor variables), as well as with a regular-
ization multiplier that contributes to select those features and to
reduce overfitting (Merow et al., 2013). We allowed regularization
and feature classes to vary and we assessed the overall discrimina-
tion ability of each model on the basis of the train and test AUC.
Regularization was allowed to vary from 0.2 to 5 in steps of 0.2
and the feature classes combinations tested were: l, lq, lh, lp, lqp
and lqph. From this step, we obtained one optimized model per
variable set, i.e. 2014-50 m, 2014-250 m, 2015-50 m and 2015-250
m. These models were finally run using the best set of hyper-
parameters obtained and projected over the study area to obtain
suitability maps for the occurrence of CL. The procedure described
was followed separately for the two CL datasets. All the modelling
was done in R with the SDMtune package (Vignali et al., 2020).

Model evaluation and ensemble
We performed a cross model evaluation, i.e. we used CL cases

described by Acosta-Soto et al. (2020) to evaluate performance of
models trained with our original 25 points and vice-versa. For each
data set, we generated 250 extra points to be used as background
in the evaluation. We extracted the predicted probability for the
pixel beneath the presence or background coordinates plus the four
neighbouring pixels to minimize potential geo-location and projec-
tion errors. We used both threshold dependent and independent
measures. The AUC was used as a threshold independent measure.
For the threshold dependent evaluation, we first determined the

                   Article

Figure 2. Land cover changes for the city of Corrientes and its surroundings during 2014-2016. Environmental changes detected by
Change Vector Analysis between 2014 and 2015 (left) and 2015 and 2016 (right). White dots correspond to our dataset (n=25) with
black dots representing cutaneous leishmaniasis cases, (n=74) digitized from the report by Acosta-Soto et al. (2020). Land cover (LC)
change classes are as follows: 1=moisture reduction, 2=chlorophyll increase, 3=moisture increase, 4=bare soil increase.
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cut-off values using common criteria: minimum occurrence pre-
diction, mean occurrence prediction, 10% omission,
sensitivity=specificity and maximum sensitivity plus specificity
(Liu et al., 2005, 2013). For each threshold we estimated different
model accuracy metrics (Table 3 in the Appendix). The threshold-
dependent evaluation was performed with the R SDMTools pack-
age (VanDerWal et al., 2019). We used the maximum sensitivity
plus specificity cut-off values to create binary maps and compare
predicted areas for CL occurrence in models trained with different
datasets. To obtain a final probability map, we performed model
ensemble by averaging the two best models’ predictions weighted
by their AUC values (Araújo and New, 2007). 

Results
The CL cases reported by Acosta-Soto et al. (2020) cover a

larger area than those surveyed with Corrientes health authorities
during 2015-2016. In general, the types of land cover represented
in each CL dataset are similar but Acosta-Soto et al. (2020) report
some more over the urban and peri-urban fabric (Figure 1). In any
case, both datasets show a similar spatial disposition surrounding
environmental changes detected in the south of Corrientes City and
Riachuelo (Figure 2). In total, approximately 17% of the study area
suffered some type of environmental change (12% in the period
2014-2015 and 11% in the period 2015-2016). Clearly, the largest
change detected was related to riparian areas, which from 2014 to
2015 became drier and, from 2015 to 2016, flooded. Another rele-
vant change detected was the installation of a new urbanization in
the south of Corrientes City (a green area that becomes highly

reflective). All classes of changes identified showed significant
differences between the years with respect to NDVI, NDBI and
LSWI when compared through paired t-tests (Figures 3 and 4 in
the Appendix). Figure 3 shows the counts of the three most cap-
tured phlebotomine species at the 25 locations with CL cases
reported by the health authorities. The most common sand fly
species was Ny. neivai, a known vector of L. braziliensis. Indeed it
was found at 18 out of 25 sites, while Lu. longipalpis was only
found at 5 sites.

The final MaxEnt models obtained after variable selection and
calibration are shown in Figures 4 and 5. Models fitted with our
original dataset (n=25) showed very low probabilities of CL occur-
rence in the core urban area of Corrientes City. In fact, the highest
probabilities seemed to be related to the outskirts of the city and
areas close to detected environmental changes (Figure 2). Models
using environmental variables derived from 2014 and 2014-2015
predicted much smaller areas of high probability for presence of
CL compared to the reported by Acosta-Soto et al. (2020). Indeed,
predictive maps obtained from models fitted with the dataset digi-
tized from this report (n=74), showed large areas with high proba-
bilities, and these were sometimes observed in the core urban area
(Figure 5).

Table 2 summarizes the cross-validation performance mea-
sures and the best hyper-parameter settings resulting from calibra-
tion after variable selection for the two CL datasets considered.
The predictive performance of final models (based on the training
data set) was very good in terms of AUC. In general, AUC values
were higher for models fitted with our original dataset and models
were also simpler in terms of the number of feature classes includ-
ed. The difference in training and testing AUC within the cross-
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Figure 3. Abundance and composition of the three most common vector species in the 25 locations from where cases of cutaneous leish-
maniasis have been reported.
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Figure 4. Predictive maps obtained from the best models built with 25 cutaneous leishmaniasis cases for 2014-2015 and 2015-2016 for
areas of various sizes. Time and radii of areas investigated: A) 2014-2015-50 m; B) 2014-2015-250 m; C) 2015-2016-50 m; D) 2015-
2016-250 m.

Figure 5. Predictive maps obtained from the best models built with 74 cutaneous leishmaniasis cases for 2014-2015 and 2015-2016 for
areas of various sizes. Time and radii of areas investigated: A) 2014-2015-50 m; B) 2014-2015-250 m; C) 2015-2016-50 m; D) 2015-
2016-250 m.
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validation repetitions was also lower for models built with only 25
data points.

The distance to environmental changes appeared in all models
and was the most important variable in 7 of the 8 best models
(importance values ranging from 25% to more than 40%). The dif-
ferent environmental changes detected were related to changes in
vegetation cover (increase or decrease), changes in the brightness
of land covers (i.e. from vegetated areas to bare soil or built-up)

and changes related to water surface or water content (especially
flooding in riparian areas). Other relevant variables were intersper-
sion of mode and texture measures, such as contrast or entropy
obtained from different spectral indices (see Figures 5 and 6 in the
Appendix). 

Figures 6 and 7 show the type of relationship between the most
important variable in each model and the predicted probability of
occurrences. For models trained with n=25 and environmental data

                                                                                                                                Article

Figure 6. Response curves for the most important variable in models trained with 25 cutaneous leishmaniasis cases for 2014-2015 and
2015-2016 with variables obtained from areas of various sizes. Time and radii of areas from which variables were obtained: A) 2014-
2015-50 m; B) 2014-2015-250 m; C) 2015-2016-50 m; D) 2015-2016-250 m.

Table 2. Performance and hyper-parameters of the best models built with n=25 and n=74.

Model                           Feature class                   Regularization                     Train AUC                       Test AUC                      Diff. AUC

N=25                                                                                                                                                                                                                                                                    
       2014_50 m                               lqph                                               1.80                                             0.967                                         0.937                                       0.031
       2014_250 m                               lh                                                  1.00                                             0.979                                         0.959                                       0.020
       2015_50 m                                 lq                                                  0.40                                             0.950                                         0.922                                       0.029
       2015_250 m                              lqp                                                 0.80                                             0.944                                         0.933                                       0.011
N=74                                                                                                                                                                                                                                                                    
       2014_50 m                                lqp                                                 0.40                                             0.842                                         0.807                                       0.034
       2014_250 m                             lqph                                               0.40                                             0.907                                         0.873                                       0.034
       2015_50 m                               lqph                                               0.80                                             0.891                                         0.837                                       0.054
       2015_250 m                             lqph                                               0.40                                             0.920                                         0.870                                       0.050
Models calibrated with k-fold cross-validation (k=4). AUC, area under the receiver-operator curve; l, linear; q, quadratic; p, product; h, hinge.
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from 2014-2015, the most important variable displayed the same
type of response regardless of using 50 or 250 m buffer sizes, i.e.
the probabilities were highest at 250-300 m from an environmental
disturbance. Something similar happens in panel C (Figure 6),
where the probability of CL occurrence increases up to a distance
close to 1000 m and then decreases again. 

In the case of models trained with n=74, the response curve
displayed high values close to the change, which decreased to
rapidly increase towards a distance around 400-700 m and then
decreased again in three out of the four models (Figure 7).
Response curves for all variables retained as important in the eight
best models are included in the Appendix (Figures 7-14).

The models that were trained with the dataset derived from the
work by Acosta-Soto et al. (2020) showed better AUC values when
evaluated with n=25 than those trained with n=25 and evaluated
with n=74 (Table 3). This is clearly explained by the spatial distri-
bution of cases in one set compared with the other, i.e. the distri-
bution of CL cases reported by Acosta-Soto et al. (2020) contained
that of the 25 cases reported by the Corrientes health authorities
and included some more urban and peri-urban occurrences that the
model trained with n=25 did not ‘learn’ and hence, could not pre-
dict. Receiver-operator curves (ROC) are shown in Figure 15 in
the Appendix.

The performance of models as evaluated with threshold depen-
dent metrics was again better for models trained with 74 CL cases

(Table 4). We chose the maximum sensitivity + specificity criteria
to build presence/absence maps since it provided, in general, low
omission errors and acceptable overall accuracy values, while
maximizing both sensitivity and specificity metrics. The table with
all the criteria evaluated and performance metrics is included in the
Appendix (Table 3).

The cut-off thresholds were much lower for models trained
with n=25 and evaluated with n=74 than for those trained with 74
CL cases and evaluated with 25. The former were in the 0.02-0.04
range while the latter spanned 0.33-0.54. The effect of applying
these thresholds can be compared in Figure 16 in the Appendix. In
general, because of the low thresholds applied to predictions from
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Table 3. Evaluation measures of the best models fitted for two
sample sizes (n=25 and n=74).

Model/Period             Test AUC (n=74)              Test AUC (n=25)

2014_50 m                                        0.743                                              0.851
2014_250 m                                      0.724                                              0.912
2015_50 m                                        0.828                                              0.905
2015_250 m                                      0.800                                              0.915
Models fitted with n=25 were evaluated with the 74 CL cases digitized from the report by Acosta-Soto et
al. (2020) (middle column). Models fitted with n=74 were evaluated with the 25 cases reported as CL by
the Corrientes Health Authorities (right column).

Figure 7. Response curves for the most important variables in models trained with 74 cutaneous leishmaniasis cases for 2014-2015 and
2015-2016 with variables obtained from areas of various sizes. Time and radii of areas from which variables were obtained: A) 2014-
2015-50 m; B) 2014-2015-250 m; C) 2015-2016-50 m; D) 2015-2016-250 m.
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models trained with n=25, the areas of CL occurrence were larger
than those resulting after applying thresholds to models trained
with n=74. In any case, the pattern/shape of the predicted CL
occurrence area was similar.

The model trained with n=74 using environmental variables
from 2015-2016 in buffers of 250 m can be considered the best
according to threshold dependent and independent evaluation 
metrics (Tables 3 and 4). The best model for the dataset consisting
of 25 CL cases, also included variables from 2015 - 2016, but with
buffer areas of 50 m instead. This later model had lower AUC and
lower threshold-related metrics than the former. However, to con-
sider uncertainty in input data and predictions, we built a final
ensemble map by averaging the predictions of both models
weighted by their respective testing AUC values (Figure 8). The
weighted average map maintained high resemblance with the best
model prediction, denoting higher suitability for CL occurrence in
the outskirts of Corrientes city and areas close to environmental
changes. The models, though trained with different datasets, dis-
played a good degree of agreement according to the standard devi-
ation (Figure 8). The areas with greater level of uncertainty includ-
ed the south-eastern part of Corrientes City and the Northeast of
Riachuelo.

Discussion
In this study we looked for the environmental determinants

associated with the 2015-2016 CL outbreak in Corrientes City and
its surroundings and explored the capacity of remote sensing
image analysis and ENM to predict the potential distribution of CL
outbreaks. Acosta-Soto et al. (2020) have recently proposed that
the outbreak under study was an atypical CL urban outbreak due to
L. infantum; hence displaying a spatial pattern consistent with VL
instead of typical CL. Here, we have attempted to elucidate the
typical or atypical eco-epidemiological pattern of this CL outbreak
given its implications for public health strategies.

In general, the models that we trained with the two datasets dif-
fered mainly in the variables that we identified as important and
regarding the extent of highly suitable areas predicted (Figures 4
and 5). In any case, the distance to different environmental changes
appeared either as the most important variable or in the top five
most important variables in all models. This is highly consistent
with typical CL outbreaks in peri-urban and rural areas after distur-
bances such as deforestation, urbanization or flooding (Salomón et
al., 2006a,b). Indeed, these are the main types of environmental

changes that we detected through remote sensing image analysis
(Figure 2). Even small scale changes within peri-urban areas such
as ground movements for a new building or park might create
favourable conditions for increased vector abundance in endemic
areas and hence a potentially higher risk of transmission (Quintana
et al., 2010; Gouveia et al., 2012). Change of class 2 in models
from 2015-2016 seems to be reflecting these types of small modi-
fications and appeared to be a highly important variable in three of
the best models that we obtained. Other variables retained in the
best models were related to vegetation cover, water or humidity
and habitat heterogeneity in the areas surrounding the CL cases.
These associations are consistent with previous works that
addressed the relationship of CL vector species with NDVI
(Chanampa et al., 2018) and landscape changes (Quintana et al.,
2010) in north-western Argentina and elsewhere (Wasserberg et
al., 2003) at equivalent spatial scales. 

The timing of variables in the best models (according to the
evaluation AUC, Table 3) is consistent with the fact that the core of
the outbreak occurred mainly in the second half of 2015 and, to a
lesser extent, in the first half of 2016 (Figure 1 in Acosta-Soto et al.,
2020). Hence, variables recorded before the epidemic period as well
as environmental changes detected between May 2015 and June
2016, were better predictors than those from one year before the out-
break, according to the lags between environmental variables-vector
population dynamics and incubation periods (Ferreira de Souza et
al., 2015; Talmoudi et al., 2017; Gutiérrez-Torres, 2020).

The best model according to the evaluation AUC values and
threshold dependent metrics was found to be one including 
variables measured at 250 m radii areas (Table 3). A previous study
found that both Lu. longipalpis and Ny. whitmani’s abundance was
related to environmental variables recorded at this scale (Quintana
et al., 2020). Hence, this model and the predictive map generated
from it (Figure 5D), might indirectly explain the presence of the
vectors of both L. infantum and L. braziliensis. The phlebotomine
trapping performed close to the 25 cases, however, showed that the
most abundant species in such sites was Ny. neivai (Figure 3).
Moreover, previous studies carried out in the city of Corrientes
during the CL outbreak (Berrozpe et al., 2017, 2019), show that
Lu. longipalpis is dominant only in the most urbanized parts of the
city, while Ny. neivai, the vector associated with typical CL, is the
dominant species in the peri-urban and rural areas where most of
the reported CL cases occur. Even though the vectors of CL have
been found to be infected with L. infantum elsewhere (Moya et al.,
2017; Thomaz-Soccol et al., 2018), their role as vectors of this par-
asite is not yet clear and the main vector of L. infantum in the
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Table 4. Performance metrics obtained for the threshold criteria maximum sensitivity plus specificity for the best models fitted for two
sample sizes (n=25 and n=74).

Model                   Threshold value              AUC             Omission rate               Sensitivity                  Specificity            Overall accuracy

N=25                                                                                                                                                                                                                                                                     
      2014_50 m                         0.040                                0.702                           0.257                                      0.743                                    0.660                                    0.679
      2014_250 m                       0.020                                0.697                           0.419                                      0.581                                    0.812                                    0.759
      2015_50 m                         0.030                                0.766                           0.135                                      0.865                                    0.668                                    0.713
      2015_250 m                       0.040                                0.745                           0.203                                      0.797                                    0.692                                    0.716
N=74                                                                                                                                                                                                                                                                     
      2014_50 m                         0.540                                0.806                           0.160                                      0.840                                    0.772                                    0.778
      2014_250 m                       0.330                                0.862                           0.040                                      0.960                                    0.764                                    0.782
      2015_50 m                         0.450                                0.866                           0.040                                      0.960                                    0.772                                    0.789
      2015_250 m                       0.340                                0.880                           0.040                                      0.960                                    0.800                                    0.815
AUC, area under the receiver-operator curve.

                                                                             [Geospatial Health 2022; 17:1033]                                                          [page 157]

Non
-co

mmerc
ial

 us
e o

nly



[page 158]                                                           [Geospatial Health 2022; 17:1033]                                         

region is still believed to be Lu. longipalpis, which has not been
associated focally with deforestation or flood events. Instead, VL-
Lu. longipalpis have spread regionally along with human massive
migrations and unplanned urbanizations associated with develop-
mental projects producing large-scale environmental changes, such
as constructions involving gas pipelines or highways (Correa
Antonialli et al., 2007; Pasquali et al., 2019).

Acosta-Soto et al. (2020) described the CL outbreak they
reported on as urban, however, only one of the cases reported by
them might fully fit this description when observing its position
regarding the distribution and density of shops and offices in the
city (see Figure 17 in Appendix and https://ide.corrientes.gob.ar/).
All the other CL cases were mainly located in peri-urban or mostly
rural areas (Berrozpe et al., 2017), more coincident with typical
CL transmission scenarios, while isolated cases of CL could have
urban residences but having been infected elsewhere. Furthermore,
if only one sample was sequenced, as seems to be concluded from
the main limitation described in the discussion of the above-men-
tioned article, this single case could be the urban one. That it would
possibly be the only one from a suspected VL case with marrow
aspirate, strengthens this supposition.

The use of human cases for predictive modelling has certain
limitations since the exact location where transmission occurred is
hardly ever known and usually the patient residential address is
recorded instead. In an endemic area this bias might be reduced,
but as shown here, it might determine the difference between an
urban atypical VL outbreak and a typical peri-urban/rural CL out-
break. Furthermore, as with most machine learning modelling
approaches, MaxEnt is constrained by the input occurrence data.
Hence, when projected over space, it will predict higher suitability
in areas with environmental characteristics similar to those of input
presences. This might be the reason why models trained with n=25
yielded very high AUC values in the training with cross-validation
but a poor performance when evaluated with the data from the
report by Acosta-Soto et al. (2020). In any case, models trained
with n=74 do not show much higher AUC values when evaluated
with our CL dataset. In order to address these caveats, we per-

formed a weighted average with the best model from each dataset
to obtain a final ensemble prediction of suitability for CL occur-
rence. Moreover, to account for uncertainty among these two mo-
dels’ predictions, we estimated the map of standard deviation,
which showed that the models were mostly congruent.
Importantly, none of the models predicted high CL probabilities in
the core urban area. 

Although several previous studies have associated CL vectors
and cases to climatic and environmental variables at different
scales (Gomez-Bravo et al., 2017; Chanampa et al., 2018;
Berrozpe et al., 2019; Chavy et al., 2019; Valero and Uriarte,
2020), this is, to the best of our knowledge, the first time that envi-
ronmental changes detected by means of automatic satellite image
analysis have been used as predictors of CL cases. Since fine scale
local changes might affect the focal distribution of disease vectors,
such as sand flies, further refinements in terms of spatial resolution
could be carried out with Sentinel 2 data and time series. 

The conclusions of the study by Acosta-Soto et al. (2020)
deserve confirmation because the eco-epidemiological and clinical
pattern of the outbreak is consistent with CL (open ulcers, cases
clustered in space and time, in recently modified environments,
close to forests and more prevalent in males (as they are involved
in activities within primary forests). Importantly, it is not consis-
tent with what we know about ACL in the region (few small non-
ulcerated papules, histologically different from typical CL), scat-
tered cases more frequent in 5- to15-year olds and in females (or
almost equally distributed between sexes). Moreover, in addition
to the information on the identification of L. braziliensis in patients
from the same outbreak, the literature on ACL cases in the
Americas molecular diagnosis uses reference strains of L. infan-
tum, L. braziliensis, L. mexicana or L. amazonensis. The inclusion
of L. amazonesis as a control is essential, as this species belongs to
the subgenus Leishmania like L. infantum, produces CL typical
skin lesions in the southern states of Brazil (Silveira et al., 1990)
and was isolated from free-ranging monkeys in the Corrientes-
Riachuelo outbreak area (Martinez et al., 2020). However, only L.
infantum controls were used in Acosta-Soto et al. (2020), so mixed
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Figure 8. Weighted average predicted suitability for the occurrence of cutaneous leishmaniasis and standard deviation based on the
selected best models.

Non
-co

mmerc
ial

 us
e o

nly



infections cannot be ruled out. Furthermore, the procedures per-
formed during sample collection, slide preservation and processing
to avoid potential cross-contamination, as explained in detail in
similar publications, were not described, nor was the Genbank
accession number of the sequences obtained, which would allow
traceability and evaluation of the percentage of homology of the
sequences with L. braziliensis and L. amazonensis. Indeed, due to
the selection force exerted on the internal transcribed spacer (ITS)-
1 sequence, where what is relevant is the length of the DNA frag-
ment and some specific DNA bases linked to RNA splicing, and
not the total sequence per se, there is a reasonable doubt that muta-
tions occurring within this fragment would not affect biological
functionality but could generate different percentages of sequence
homology.

In relation to the CL outbreak scenario or description of atypi-
cal cases, as already indicated, Acosta-Soto et al. (2020) clarify
that it was possible ‘to conduct a search for the parasite in only one
of the samples out of all of the cases diagnosed, because of the
unavailability of slices’ and that ‘of the 81 patients infected during
the outbreak, 80 were diagnosed based on direct swabs of tissue
taken from the lesions, whereas bone marrow aspirate and serolog-
ical studies via immunochromatography were used in the remain-
ing patient’. However, the latter procedures are not recommended
for patients without suspected VL.

Conclusions
Given the environmental changes detected and their relevance

to explain the outbreak, the peri-urban and rural distribution of CL
cases (either surrounding or being surrounded by environmental
changes) and the higher abundance of CL vectors in the area where
cases occurred, the scenario is mostly consistent with a typical CL
outbreak (Salomón, 2019). To identify an apparently typical CL
outbreak as cases of atypical CL due to L. infantum, as it has been
suggested and potentially extrapolated to also include other CL
outbreaks, would imply a huge increase in costs for local control
programmes and health systems all over the continent. Hence,
given that the CL outbreak under study was identified as typical by
means of clinical and molecular diagnose and also appears to be
typical regarding its spatial and environmental association, the
suggestion that Corrientes 2015-2016 outbreak might have been
caused by L. infantum, requires clinical, epidemiological and pa-
rasitological re-evaluation and confirmation.
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