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In developing countries, the acute gastroenteritis outbreaks submitted for viral testing are limited due
to deficient surveillance programs. The aim of this study was to analyze a passive surveillance strategy
for monitoring the molecular epidemiology of norovirus (NV) and counterbalance the genetic diversity
data gap.

Laboratory-confirmed rotavirus negative sporadic stool samples (N = 523) collected between 2010 and

ﬁg‘g"’frdss’ 2017 from children were selected from our archival collection and were tested for NV and sequencing
Gene"[lich(l:liversity was performed on the positive samples. Passive surveillance information was compared with the genetic
Argentina diversity data that was available from local norovirus-confirmed gastroenteritis outbreaks.

Each year, norovirus detection in the sporadic samples ranged from 12 to 29%. Gl and GII norovirus were
detected in 7 (1.3%) and 101 (19.3%) of the specimens, respectively. Four GI and six GII capsid genotypes
were identified. Six out of 9 strains detected in the NV outbreaks panel were also identified in the set
of sporadic samples either coincidently in the same year, the previous or the later year. Also, this set of
samples depicted even better the circulating epidemic strain. Thus, implementing norovirus testing and
genotyping in stool samples collected with other purposes represent a suitable strategy for providing
genetic diversity information.

© 2021 Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Developing countries

Introduction

Noroviruses are the leading cause of symptomatic acute gas-
troenteritis in people of all-age groups worldwide [1] and they
have been widely described as the responsible for the majority of
gastroenteritis outbreaks in semi-closed settings [2,3].

Noroviruses can be classified into genogroups based on com-
plete VP1 amino acid sequences, of which GI and GII predominate
in humans. Each genogroup can be further divided into genotypes
based on nucleotide sequences of the capsid and the polymerase
regions [4]. Either way, GIl4 is the most frequently detected
strain worldwide as is associated with near 70% of the norovirus
infections. Unlike other genotypes, GI.4 has shown epochal evolu-
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tionary dynamics, with periodical emergence of genetically distinct
variants replacing previous dominant strains [5].

Monitoring the norovirus genetic diversity is important for two
main reasons: (i) genotypes may suggest the possible routes of
transmission in outbreak settings [6]; and (ii) understanding the
genetic diversity and evolution is vital for norovirus vaccine devel-
opment. Norovirus outbreaks are the most common scenarios to
study its molecular epidemiology. However, in many developing
countries the amount of reported and tested acute gastroenteritis
outbreaks is disturbingly limited even though they often represent
a mandatory notification health event. Under notification occurs
mainly because most of the cases go unreported if people do not
seek medical care, either due to lack of healthcare access or due
to the mildness and self-limited nature of the symptoms [7]. Also,
molecular diagnostic assays are not usually available in clinical set-
tings because they are cost-prohibitive and viral testing in cases of
diarrhea in the general population is not often a priority, so they
remain undiagnosed.
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Norovirus (NV) frequency of detection in passive surveillance set of samples in Argentina, 2010-2017.

Year Number of sporadic samples selected NV GI positive samples NV GII positive samples NV global frequency of detection (%)
2010 49 0 14 28.6
2011 51 2 4 11.8
2012 39 0 10 25.6
2013 35 0 9 25.7
2014 112 2 30 28.6
2015 73 1 8 12.3
2016 114 1 18 16.7
2017 50 1 8 18.0
Total 523 7 101 20.7
Thus, our study aimed to investigate the potential benefits of a) Gl1 Gl2 Gl3 Gl4
a passive surveillance strategy to counterbalance the norovirus
genetic diversity data gaps. GIL.P1 —‘
Materials and methods OLE2
GL.P3
In Argentina, the Rotavirus Surveillance Network includes
sentinel hospitals distributed nationwide that monitor rotavirus GlLP4
in sporadic acute gastroenteritis symptomatic children through
immunochromatography or ELISA. Sentinel hospitals are encour-
aged to submit all the rotavirus-positive for genotyping and a
fraction (~10%) of rotavirus-negative samples for archival pur- b) Gll1  Gl.2 GI.3 Gl4 Gll.6 GI7
poses.. N . anp2 —— ¢
For logistical and cost considerations, a set of anonymized '
rotavirus-negative samples from archival collection from January GIl.P4
2010 until December 2017 were randomly selected on the basis of
the total number of samples received per year. After nucleic acid GIl.P7
isolation, samples were screened for norovirus GI and GII by real- 1
time quantitative reverse transcription polymerase chain reaction GIl.P16 & O
and norovirus-positive samples were further genotyped by ampli- GILP21
fication and sequencing of ~575 bp of a partial region of the 3’-end
of ORF1 and 5’-end of ORF2 of the genome as previously described GIl.P31

[8]. Genotype assignment was retrieved using the online software
Human Calicivirus Typing Tool (https://norovirus.ng.philab.cdc.
gov). Norovirus sequences from each representative strain were
submitted to GenBank with the accession numbers MW649127-
649130 (GI strains) and MW649143-649152 (GII strains).

For each year, we examined the differences between geno-
types detected through this passive surveillance strategy and those
detected in the norovirus-confirmed gastroenteritis outbreaks [9].

Results

A total of 523 stool samples were tested for norovirus. GI and
GII norovirus were detected in 7 and 101 of the specimens, respec-
tively. This represented a norovirus detection rate in the passive
surveillance samples panel that ranged from 12 to 29% for each year
(Table 1). Dual typing was successfully determined from 65 sam-
ples out of 108 positive samples (~60%). Four GI (GI.1, G1.2, GL.3, and
Gl.4) and six GII capsid genotypes (GII.1, GII.2, GII.3, GIL.4, GII.6, and
GIL.7) were found (Fig. 1). GIL.4 was the most frequent genotype and
Den Haag/2006, New Orleans/2009 and Sydney/2012 variants were
retrospectively detected. Regarding polymerase genotypes, four GI
(GLP1, GLP2, GL.P3, and GI.P4) and seven GII (GILP2, GIL.P4, GIL.P7,
GIIL.P16, GII.P21, GII.P31, and GII.P33) were identified. Six out of the
13 strains identified in the passive surveillance panel were recom-
binants (Fig. 1). Moreover, the polymerase genotypes that were
found associated with GII.4 strains were GII.P4, GIl.P31 and GIL.P16,
accordingly to the contemporaneous circulation patterns described
worldwide. In comparison with the genetic diversity observed in
norovirus acute gastroenteritis outbreak of the same period, of the
nine strains detected in the outbreak panel, six were also identified
in the set of sporadic samples either coincidently the same year,

GIl.P33 —l

Fig.1. Summarized polymerase and capsid norovirus genotypes detected from spo-
radic stool samples panel in Argentina, 2010-2017. Association of the combination
of polymerase types (in rows) and capsid types (in columns) detected in norovirus
sporadic samples from passive surveillance strategy. Each genotype, GI (a) and GII
(b)is represented with a specific color. Double-colored circles indicate recombinant
strains.

the previous or later years (Fig. 2). Between both passive surveil-
lance set of samples and outbreaks, GII genogroup was the most
prevalent with GII.4 being the dominant genotype.

Discussion

Developing countries experience difficulties with the plan and
continuous support of health events surveillance programs. Thus,
we intended to explore a passive approach as an alternative strat-
egy to overcome the challenge of assessing norovirus genetic
diversity.

As reported elsewhere [10,11], the genotypes found in the
sporadic panel were more diverse than that the associated with
outbreaks. Noteworthy, this set of samples not only contempora-
neously agreed with the non-GIl.4 norovirus genotypes related to
acute gastroenteritis outbreaks but also depicted even better the
circulating epidemic strain, as we found it in associations with sev-
eral polymerase genotypes, and more GII.4 variants. This represent
an advantage for early detection of emerging strains with pandemic
potential that circulate before being detected in an outbreak setting
[10].
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Fig. 2. Comparison between norovirus outbreaks and passive surveillance genotypes detected in Argentina, 2010-2017. For each year, norovirus partial polymerase and
capsid genotypes are listed for outbreaks (dotted bracket) and sporadic set of samples (continuous bracket). The gray-shaded area represents the strains detected coincidently
the same year in both groups and the dotted genotypes indicate those that were detected the previous or later years.

These results attempt to encourage researchers from public
health and reference laboratories that have limited access to test
acute gastroenteritis outbreaks to be able to get at least a limited
set of rotavirus-negative stool samples from sporadic symptomatic
cases in children under 5 years of age during the cold season to
increase the yield of norovirus detection (i.e., 100 samples might
potentially lead to 10-30 norovirus positive samples).

While the selection of the panel is biased, this study highlights
somehow the importance of norovirus in those symptomatic chil-
dren who remained undiagnosed. Following the decline of rotavirus
gastroenteritis after the introduction of vaccines, it is important
that countries aspire to understand the epidemiology and the
evolutionary dynamics of norovirus as a framework for control
and prevention policies, such as vaccines in high-risk populations
[1,12]. Until improvements on health information systems are
achieved, norovirus genetic diversity should be conducted through
alternative strategies. Therefore, we consider that passive surveil-
lance represents a suitable tool for providing norovirus circulating
genotypes information for those countries where data gaps from
outbreaks exist.
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