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ABSTRACT
Strains of Shiga toxin-producing Escherichia coli (STEC) can cause the severe Hemolytic Uremic Syndrome
(HUS). Shiga toxins are protein toxins that bind and kill microvascular cells, damaging vital organs. No
specific therapeutics or vaccines have been licensed for use in humans yet. The most common route of
infection is by consumption of dairy or farm products contaminated with STEC. Domestic cattle colonized
by STEC strains represent the main reservoir, and thus a source of contamination. Outer Membrane
Vesicles (OMV) obtained after detergent treatment of gram-negative bacteria have been used over the
past decades for producing many licensed vaccines. These nanoparticles are not only multi-antigenic in
nature but also potent immunopotentiators and immunomodulators. Formulations based on chemical-
inactivated OMV (OMVi) obtained from a virulent STEC strain (O157:H7 serotype) were found to protect
against pathogenicity in a murine model and to be immunogenic in calves. These initial studies suggest
that STEC-derived OMV has a potential for the formulation of both human and veterinary vaccines.
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Hemolytic Uremic Syndrome (HUS) is a serious human disease
of the microvasculature frequently affecting children below
the age of five. Its acute phase can cause 3–5% deaths and in
the long term up to 30% of the patients suffer different degrees
of kidney damage, which eventually leads to chronic kidney
failure.1,2 Shiga toxins producing Escherichia coli (STEC)
strains are the main etiological agent of the infectious form of
HUS.3,4 Shiga toxins (Stx) are a group of AB5 protein toxins
that exert their pathogenicity through binding and killing
microvascular cells.3 To date, no specific treatment is available
for HUS, although some therapeutic candidates are in advanced
stages of development.5,6 Out of the hundreds of STEC sero-
types detected in HUS patients, O157:H7 serotype is by far the
most frequently isolated.7,8 Typical STEC infection in humans
is linked to consumption of meat and dairy or farm products
contaminated with ruminant feces. STEC strains are able to
attach to and colonize the gastrointestinal tract of a wide array
of hosts, including humans.3,9 Healthy cattle is considered the
main zoonotic reservoir of STEC strains. The Stx produced
after colonizing the human gut go through the epithelia by a
complex mechanism involving neutrophil transmigration.10

Having been granted access to circulation, Stx are able to exert
their detrimental action onto target tissues. Although Stx are
responsible for most of the pathogenicity of STEC strains, they
do not play a key role in gastrointestinal tract colonization. The
molecular mechanisms of STEC colonization have been exten-
sively studied (for reviews, see ref. 3,11–13). Flagella, LPS, and
long polar fimbriae act during initial contact of bacteria with

the epithelia. Proteins associated with or secreted by a type
three secretion system (TTSS) display a critical role after this
initial interaction, originating the so-called attaching and effac-
ing (A/E) lesions on intestinal epithelia. Other relevant viru-
lence factors during gastrointestinal tract colonization are
intimin and enterohemorrhagic E. coli factor for adherence 1
(efa-1). Vaccine candidate’s design for prevention of HUS has
been a large field of research through the past three decades.
The main strategies that are followed can be divided in two
groups, according to their specific objectives: (1) the generation
of systemic responses able to bind and neutralize Stx, thus
abrogating their detrimental effect on target tissues; (2) inhibi-
tion of STEC attachment and colonization of the gastrointesti-
nal tract through mucosal immune defenses. The first strategy
is aimed at direct prevention of the disease by human vaccina-
tion. Although vaccine candidates based on Stx toxoids, recom-
binant Stx, heterologous expression, and outer membrane
vesicles (OMV) have proven successful in animal models of
lethal Stx challenge, none of them has been licensed to
date.14–18 The second strategy could also be divided in two,
whether it is destined at direct protecting humans through vac-
cination or indirect protecting humans by vaccinating cattle.
Indeed, massive cattle vaccination is proposed as one of the
interventions with the highest potential for lowering HUS inci-
dence in humans.19–21 Extensive research has been conducted
on such vaccine candidates, in both murine and bovine models.
These models include formulations based on recombinant
expression of virulence factors,22–26 culture supernatants from
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virulent strains grown under conditions promoting virulence
factor secretion,27,28 subunits or components directly extracted
from STEC strains,29–31 and heterologous expression of STEC
virulence factors in both attenuated and unrelated bacteria.32

Due to the complex mechanism responsible for colonization, it
is not surprising that protection has only been observed for
multi-antigenic formulations. Noteworthy, as anti-STEC vacci-
nation in domestic cattle will not bring any economic benefit to
cattle breeders, keeping the cost per dose of candidates as low
as possible is mandatory.19 This might explain why despite the
proven efficacy of various vaccine candidates, only two have
been commercialized: Econiche� from Vet�oquinol and Epito-
pix� from Pfizer. Both commercial vaccines are relatively inex-
pensive to produce from virulent STEC cultures, thus avoiding
more expensive technologies such as recombinant protein
expression. Econiche� vaccine is based on TTSS proteins
obtained from culture supernatants, while Epitopix� is com-
posed mainly of two kinds of proteins (porins and sidero-
phores) extracted from the culture biomass. They have shown
effectiveness in reducing O157 serotype prevalence in cattle
under conditions of natural exposure.33 Unfortunately, an
increasing number of outbreaks are linked to STEC strains that
do not carry the locus of enterocyte effacement (LEE), where
the TTSS is coded. This fact, combined with the variability
observed in STEC strains responsible for recent important out-
breaks, highlights the need for a broader antigenic-range vac-
cine. Moreover, it would be of great value if this candidate
could also be applied to direct HUS prevention in humans.

The OMV are proteolipidic nanoparticles purified from the
external membrane of gram-negative bacteria. They are usually
obtained by two alternative methodologies, one based on deter-
gent extraction and the other by inducing the release of blebs
during bacterial growth.34 Lipopolysaccharide (LPS) is a major
constituent of the outer membrane that gives OMV relevant
adjuvant properties but it also poses a threat due to its inherent
toxicity. In this sense, native OMV produced during growth of
STEC strains harbor enough Stx and LPS to induce HUS-like
symptoms and signs when administered intraperitoneally to
mice.35 One key advantage of OMV production based on deter-
gent extraction is that during this process the vesicles are sub-
mitted to simple steps of purification that drive their LPS
content within limits compatible with vaccine formulation.
Although OMV consist of components of the outer membrane
associated with detergent molecules and filled with periplasmic
content, traces of material present in the external milieu,
including extracellular virulence factors, are also expected to be
present. Moreover, since detergent addition during OMV pro-
duction causes some degree of cell lysis, intracellular compo-
nents are also expected to be incorporated into the vesicles up
to a certain level. In brief, OMV are multi-antigenic, the protec-
tive response that they induce is obtained by a cooperative
effect of the specific responses to multiple antigens and Molec-
ular Patterns Associated Pathogens (PAMPs), each of which
may be insufficient to provide immunity if administered inde-
pendently.34 These properties, combined with low-cost produc-
tion processes at the industrial level, make them promising
vaccine candidates.36

Most murine models that evaluate toxicity induced by STEC
strains rely on injection of crude or pure Stx preparations and

often measure mortality as the endpoint.37 The two types of Stx
(Stx1 and Stx2) are coded in lysogenized phages integrated into
the bacterial chromosome. Their expression is induced under
conditions that initiate the phage lytic cycle, causing Stx release
to the external milieu. Other relevant extracellular virulence
factors are also produced by STEC strains, such as enterohemo-
lysin (EHEC-Hly), subtilase (SubAB), and serine protease
(EspP).38–40 We therefore decided to evaluate the immunopro-
tective potential of the OMV-based vaccine formulations
against preparations comprising also extracellular toxins other
than Stx. To address this objective, a concentrated culture
supernatant (CS) was prepared as follows: A virulent E. coli.
O157:H7 strain (EO1570110, kindly provided by Dr. Marta
Rivas, Servicio de Fisiopatogenia, ANLIS “Dr. Carlos G.
Malbr�an”, Buenos Aires, Argentina) was cultured at laboratory
scale under Stx expression-inducing conditions, i.e., addition of
0.08 mg/ml ciprofloxacin to a late log phase culture of the
EO1570110 strain. After 12–16 h induction, the cultures were
centrifuged, the supernatants concentrated 10X and diafiltered
against 15 volumes of saline using a Sartocon Slice� with a
10,000Da MWCO filtration membrane. The protein concentra-
tion in the CS was 7.5 mg/ml, as determined by the Lowry
method. Preliminary experiments in Balb/c mice showed that
intraperitoneal injection of a CS dose containing 0.08 mg pro-
tein was sufficient to cause 90% mortality 7 days after challenge
(results not shown).

Two formulations were then prepared for evaluating their
immunoprotective potential in this murine challenge model.
One formulation was based exclusively on OMV obtained by
detergent extraction, as in ref. 41, with minor modifications.
Briefly, an inoculum of the EO1570110 strain was grown at lab-
oratory scale in trypticase soy broth (TSB) supplemented with
44 mM sodium bicarbonate, until late log-phase. The biomass
was then isolated by centrifugation and homogenized in a
30 mM tris buffer, containing 2mM EDTA, pH 8.5 at a ratio of
100–200 mg/mL. Sodium deoxycholate (Fluka, Switzerland)
was then added at a ratio of 0.1-1 mL/g of biomass, incubated
for 1 hour and centrifuged for 15 min at 33,000 g. All superna-
tants were collected, subjected to a sequence of diafiltration
processes against saline, and filter-sterilized using a Sartorius
Minisart-plus unit of 0.2 mm pore size. General features of the
OMV were characterized by routine techniques: protein con-
centration in stock solution (>0.5 mg/ml), DNA content
(<0.035 mg DNA/mg protein), LPS content (0.02–0.12 mg LPS/
mg protein), endotoxicity (<20,000 EU/ml, LAL test), particle
size and polydispersion (99 nm and 0.28, respectively). These
physicochemical properties are similar to those of licensed
OMV vaccines or formulations currently in advanced phases of
development.34,41 As protein toxins including Stx are expected
to be present in the OMV, a glutaraldehyde inactivation step
was introduced after OMV extraction from the biomass.42 The
inactivated OMV (OMVi) were finally adsorbed onto alumi-
num hydroxide adjuvant (Alhydrogel�), at a relation 1 mg
adjuvant to 25 mg protein, to obtain a single-bulk. Protein
adsorption to adjuvant in this single-bulk was determined and
found to be above 90% level. Vaccine formulations at the time
of inoculation were prepared by taking samples under sterile
conditions from this single-bulk and achieving the desired final
protein concentration by dilution with saline. The other vaccine
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formulation was also based on OMVi antigen, but in combina-
tion with glutaraldehyde-inactivated CS preparation (CSi). This
combined antigen was also adsorbed to aluminum adjuvant fol-
lowing the same single-bulk strategy as before, also formulating
the vaccines at the time of inoculation by sampling and dilution
with saline aseptic conditions (OMVi/CSi formulation).

Three groups of 10 Balb/c mice were allocated to their cages,
10 mg protein doses of the OMVi formulation were assigned to
group 1, 10 mg protein doses of the OMVi/CSi formulation to
group 2, and aluminum adjuvant in saline to group 3 (control).
All three groups were vaccinated by the subcutaneous route on
days 0 and 21 and intraperitoneally challenged 2 weeks after
the second dose with the CS preparation. Mice were kept under
observation during the following seven days and signs of dis-
tress and mortality were recorded on a daily basis (Fig. 1). All
animals in the control group started showing signs of distress
24 hours after challenge, with lethal outcome in 90% of the
cases by day 7. By contrast, no signs of distress were observed
in mice from the two vaccinated groups, showing 100% protec-
tion from lethal outcome by day 7. Since equal protection was
observed in both vaccinated groups, it can be concluded that
the effect of the OMVi component was dominant. To further
characterize the immune response elicited by this component,
mice sera from group 1 were used as the primary antibody in
the following western blot experiment. As OMVi are produced
by chemical inactivation of OMV, this process generates aggre-
gates of different size that are unable to be analyzed by SDS-
PAGE. This situation precluded direct analysis of the immune
response generated by the antigens in the OMVi in a western
blot. To overcome this impediment the immunological analysis
was organized as follows: a bacterial lysate of the O157:H7

strain, representative of biomass constituents, was run on one
lane of an SDS-PAGE gel. The CS preparation used for the
challenge, representative of extracellular components, was run
in a second lane of the same SDS-PAGE gel. After resolution,
the proteins were transferred to a nitrocellulose membrane,
and pooled sera from group 1 mice were used as the primary
antibodies and anti-mouse IgG conjugated to horseradish per-
oxidase as the secondary antibody in a western blot (Fig. 2).
Intense recognition was observed in immunized mice sera on
three molecular weight regions present in both protein extracts
(below 14 kDa region, 33 kDa band, and 50–65 kDa region).
The identity of the bands has not been elucidated yet, although
proteomic analyses of OMV composition are being performed.
Also, some minor protein bands were exclusively present or
recognized in one or the other protein fraction (i.e., 22 kDa, 30
kDa). Therefore, CSi addition to vaccine formulations has no
clear effects or benefits. As maintaining formulation complexity
low helps reduce production costs, formulations containing
only the OMVi component were considered for further
experiments.

Since domestic cattle are the main reservoir of zoonotic
STEC strains, it would be important to assess whether OMVi
formulations are able to prevent bovine colonization. As a first
step, immunogenicity testing was performed. Fifteen calves
from a beef producing brand (Aberdeen Angus) between six
and eight months old were allocated to a single pen and ran-
domly divided into three groups of five. Group 1 was assigned
a 50 mg OMVi plus aluminum adjuvant per dose, group 2 a
100 mg OMVi plus aluminum adjuvant per dose, and group 3
was treated with aluminum adjuvant in saline (control). Each
group was vaccinated subcutaneously on days 0, 21, and 42.
Blood was extracted periodically for 99 days and the humoral
response for each day and animal was assessed by an indirect
ELISA using OMVi as the capture antigen in the solid phase
and anti-bovine IgG conjugated to horseradish peroxidase as
the secondary antibody. The optical density at 450 nm
(OD450nm) registered for each well was normalized to the
OD450nm of an in-house positive control serum (response).
Fig. 3 shows the kinetics of the specific humoral response
observed on each group. The error correlation structure was
modeled based on linear mixed model statistical analysis and
maximum-likelihood criteria. After a significant interaction
was detected between the time and treatment factors (p<0.05),
a contrast analysis of the response was performed between each
pair time�treatment. As a result, both OMVi doses are immu-
nogenic at similar levels, showing non-significant differences
between them at peak (day 49) and long-term times (p<0.05).
This is important in terms of productivity since a comparable
response was achieved in group 1 with half the antigen dose
employed for group 2. Noteworthy, both vaccinated groups
showed a rapid decay in their humoral response 50 days after
the peak, with response levels at day 99 being approximately
half of those at day 49. Similar kinetics has been reported in
cattle vaccinated with commercial vaccines. Allen et al. showed
that for the commercial Econiche� vaccine, antibodies peak
14 days after the last immunization dose and fall approximately
to half during the following two weeks.27 However, these results
should be analyzed with caution. The levels of circulating anti-
bodies are not expected to correlate with protection at the

Figure 1. Protection against lethal Stx challenge: Thirty Balb/c mice (18-22 g
weight) were divided into three equal groups and allocated in their cages. Group
1 (open circles) was treated with 10 mg protein per dose of a formulation based
on OMVi immunogen adsorbed to aluminum adjuvant. Group 2 (open triangles)
was treated with 10 mg protein per dose of a formulation based on the combined
OMVi / CSi immunogen adsorbed to aluminum adjuvant. Group 3 (open squares)
received aluminum adjuvant in saline (control). All three groups were vaccinated
subcutaneously on days 0 and 21 and intraperitoneally challenged 2 weeks after
the last dose with the CS preparation. Mice were maintained under observation
during the following seven days and signs of distress and mortality were recorded
on a daily basis. In this Figure, the probability of survival at each time point (sur-
vival) is plotted against the days of observation after challenge.

2210 M. FINGERMANN ET AL.



colonization site, the recto-anal junction. First of all, locally
produced IgA and not circulating IgG are the dominant immu-
noglobulins at this site. Also, it has been recently shown a Th1
skew to the immunological response at the rectal mucosa after
E. coli O157:H7 infection, suggesting a relevant role for cellular
immunity effectors on bacterial clearance.43 Nevertheless, the
aim of our work was to make an initial assessment on the
immunogenicity of OMVi formulations. Other relevant immu-
nologic parameters, such as specific IgA levels in feces or cellu-
lar immune response assessment at the rectal mucosa, will be
addressed in future studies.

To conclude, OMVi-based formulations are protective
against STEC pathogenicity in a murine model and immuno-
genic in calves. The protection observed against STEC pathoge-
nicity is based on the immune neutralization of the activity of
several toxins present in the SC. In terms of a human vaccine,
it would be important to evaluate how much of this effect was
originated on a specific anti-Stx response. Toxicity to Vero cell
monolayers is the gold standard technique for specific Stx
detection and quantification.3 Then, the anti-Stx response in
immunized animals’ sera could be analyzed by evaluating their
neutralization potential against SC verocytoxicity. As stated
before, cross-linking of OMV during glutaraldehyde inactiva-
tion precluded OMVi analysis by means of SDS-PAGE and
immunoblot. OMV samples obtained before inactivation will
then be used in future experiments to provide the capture anti-
gens in the western blot for assessing the immunogenic proper-
ties of OMVi. Moreover, this non-cross-linked material is
currently been analyzed based on mass spectrometry.

Human infection and cattle colonization are initiated by
bacterial attachment to the distal portions of the rectum. More-
over, the sera from HUS patients and infected cattle cross-rec-
ognize most of the virulence factors known to have a critical
role in colonization.44–46 Although our work is focused on pre-
venting infection in cattle, it could be expected that an effective
vaccine candidate against infection in cattle could also be

effective against infection in humans, a critical aspect for the
control of outbreaks. Studying the inhibition of bacterial adhe-
sion to cell lines or tissue explants by sera from immunized ani-
mals could add complementary information to the functional
analysis of immunized sera. Although mice are not naturally
colonized by STEC strains and do not show the typical A/E
lesions, murine models of infection have been developed for
evaluating protection by anti-STEC vaccine formulations.37

One of these models is currently used for studying OMVi-based
vaccine formulations with different adjuvants (oleic vs mineral
adjuvants), routes of administration (subcutaneous vs intrarec-
tal), and changes on immunogenic composition (production of
OMV from the biomass of bacteria grown under different con-
ditions). These experiments will help in the design of an opti-
mized formulation to be directly tested for protection against
cattle colonization. Two types of studies are usually performedFigure 2. Humoral response characterization: Two protein extracts derived from

the virulent O157:H7 serotype strain used in these experiments were separated on
15% SDS-PAGE and analyzed by the western blot technique. Sera from mice immu-
nized with the OMVi formulation (group 1) were used as the primary antibody
(1:300 dilution in saline). Anti-mouse IgG conjugated to horseradish peroxidase
(Sigma Aldrich, San Luis, USA) was the secondary antibody (1:1000 dilution in
saline). Lane A was loaded with the CS used in the lethal challenge and lane B
with a bacterial lysate of the O157:H7 strain on. Molecular weight marker (MW)
positions are indicated in kDa on the right of the image.

Figure 3. Immunogenicity testing in calves: Fifteen calves from a beef-producing
brand (Aberdeen Angus) between six and eight months old were allocated in a sin-
gle pen and randomly divided into three groups of five. Colonization status by
O157 serotype strains was analyzed before and during the experiments for each
animal by immune-specific enrichment and detection techniques. All animals were
free from O157 from the beginning to the end of experiments (data not shown).
Group 1 (open circles) was treated with 50 mg OMVi plus aluminum adjuvant per
dose, group 2 (open triangles) with 100 mg OMVi plus aluminum adjuvant per
dose and group 3 (open squares) was treated with aluminum adjuvant in saline
(control). Each group was vaccinated subcutaneously on days 0, 21, and 42. Jugular
vein blood was extracted periodically during the 99 days of the experiment and
clotted to obtain sera for further immunogenicity testing. The humoral response
for each day and animal was assessed by an indirect ELISA using OMVi as the cap-
ture antigen in the solid phase. All sera were diluted 1:100 with saline and added,
in triplicate, to each well of a 96 positions ELISA plate (Polysorp�, Nunc, Denmark).
An in-house positive control was constructed by pooling the sera obtained from
Group 2 animals on day 49 of the experiments. This positive control was diluted
1:100 in saline and added in triplicate to the wells of every ELISA plate. A 1:10,000
dilution of a rabbit anti-bovine IgG conjugated to horseradish peroxidase (Sigma
Aldrich, San Luis, USA) was used as the secondary antibody. After stopping peroxi-
dase reaction with 2 N sulfuric acid, the optical density at 450 nm (OD450nm) was
determined. In order to account for plate to plate variability, an arbitrary variable
was defined (Response) as the quotient between each well’s OD450nm and the
mean OD450nm from the positive controls in the same plate. In this figure, mean
Response values for each group of animals are shown, from three independent
plates, with their corresponding standard error bars. The error correlation structure
was modeled based on linear mixed model statistical analysis and maximum-likeli-
hood criteria. Statistical analysis revealed a significant interaction between the fac-
tors time and treatment (p < 0.05). Contrast analysis was performed on the
response observed for each pair time�treatment (p < 0.05).
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with such an aim: protection from natural exposure in the field
and protection from an experimental challenge by oral admin-
istration of virulent bacteria. The latter, although requiring
more complex assets (ABSL-2 for large animals) and only indi-
rectly representing a situation of natural exposure to the bacte-
ria, allows for testing and comparing different variables
(antigenic composition, doses, vaccination schedules, different
adjuvants, routes of administration) with lesser animals. It is
then adequate for initial assessment of vaccine efficacy against
colonization. Noteworthy, several STEC serotypes other than
O157:H7 (e.g., O26:H11, O121:H19, O145:H-, O103:H2, etc.)
are responsible for an increasing number of outbreaks.47 While
most lines of research on veterinary vaccines are aimed exclu-
sively at the O157:H7 serotype, available commercial vaccines
have not proven effective against non-O157 strains, in the
field.48,49 The multi-antigenicity of OMV-based formulations
vaccine could bring an opportunity for cross-protection against
different serotypes. This important aspect will also be addressed
in future experiments.
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