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Lutzomyia longipalpis (Lutz & Neiva) is the main vector of Leishmania
infantum (Nicolle) in America, associated in turn with the current spread
and urbanization of American visceral leishmaniasis (AVL). The vector dis-
tribution in AVL foci shows a spatial-temporal clustering despite the dif-
ferent epidemiological contexts. The factors associated with the macro-
scale distribution of Lu. longipalpis as a landscape stratification are dis-
cussed in the framework of the process of their adaptation to anthropized
environments. On the other hand, the fact that Lu. longipalpis is clustered
in only a few hot spots or critical sites suggests that microscale approaches
that describe the trap surrounding environment and the availability of
refuges and food sources are better at explaining the uneven distribution
of this vector, and should contribute, together with macroscale variables,
to design operational control strategies. With regard to temporal distribu-
tion and climatic or vegetation data obtained by remote sensing as varia-
bles to explain and forecast the abundance of Lu. longipalpis, it is neces-
sary to take into account the time lags in relation to the life cycle of the
vector, the difference between the level of daily activity and actual abun-
dance, and the differences in critical variables and thresholds according to
the region or season. In conclusion, this review shows that it is feasible to
characterize the distribution of Lu. longipalpis at focus level and within it
to identify the main critical sites, proposing a sequential cost-effectivity
strategy for urban AVL surveillance and control.

Introduction

Lutzomyia longipalpis (Lutz & Neiva) has been associated
with visceral leishmaniasis since the first studies in the
Americas during the early twentieth century, usually in iso-
lated rural foci. From then on, this species drew attention
from the public health perspective to prevent and to control
American visceral leishmaniasis (AVL), but also from a more
theoretical epidemiological frame as an American
Phlebotominae with vectorial competence for Leishmania
infantum (Nicolle), an invasive alien parasite. Both these per-
spectives expanded during the following years, the public
health one as the geographical spread and urbanization of
the vector increased the incidence of the parasite infection in
South America mainly since 1970–1980 (Salomón et al 2015),
while the theoretical perspective also grew in importance as

a result of the relatively easy laboratory-bred colonies that
put Lu. longipalpis in the hall of fame of “experimental spe-
cies” to perform from genomics, microbiota, and parasite-
vector interaction studies to saliva, pheromone, and behav-
ioral research. The interest generated by Lu. longipalpis is
reflected in the amount of research and publications that
refer to this species, that is why in addition to the more
significant or recent works cited in the text, a table that
summarizes the main variables discussed in this review and
most of the articles that reported them are presented as a
supplementary file (Suppl 1).

However, two main obstacles prevented the generaliza-
tion of these findings: (a) the genetic polymorphism of the
Lu. longipalpis complex, with ongoing cryptic speciation pro-
cesses and introgression between sibling species, with differ-
ent vector capacity or spread potential (Casaril et al 2019);
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and (b) the plasticity that allows Lu. longipalpis dispersion
and adaptation to different environments, probably caused
by the aforementioned genetic heterogeneity, that conse-
quently made different variables critical in different scenarios
with disparate or even contradictory results (Lainson &
Rangel 2005).

On the other hand, Lu. longipalpis distribution is spatially
and temporally uneven, clustering in “hot spots” despite the
geographical location and epidemiological contexts. Hence,
many studies attempted to define the variables associated
with the current and potential distribution of this vector, at
different scales, to improve the current strategies of surveil-
lance and control of AVL. But these approaches require care-
ful examination of the consistency between sampling design
and analysis scales, to avoid macrogeographic conclusions
based on captures that represent only the phlebotomine
populations around the trapping site, since the light traps
separated by 5 m did not present mutual interference (Bell
et al 2018). Otherwise, there is a risk of reaching conclusions
on macro temporal and spatial scales based on captures with
microfocal conditions, such as when the vector should be
abundant by site and season but at the precise time of cap-
ture Lu. longipalpis “gone with the wind,” an ephemeral var-
iable that will be discussed later. Therefore, we will review
the factors discriminated by scale that were associated with
Lu. longipalpis distribution and the difficulties for their inter-
pretation, whereas for AVL, as for many vector-borne dis-
eases, we must take into account that while the biological
variables contribute to the possibility of the outbreaks, its
actual probability is modulated by the social determinants
of risk and extraordinary climatic events.

Spatial Distribution

Landscape Stratification (Macroscale)

The spatial distribution of Lu. longipalpis at the macroscale is
usually discriminated in forest, rural, urban/peri-urban, and
urban environments, although rarely accurately character-
ized. The proportion of this species among others
Phlebotominae barely reaches more than 5% in the forest
(Thomaz-Soccol et al 2018), but its abundance and relative
abundance tends to increase with the anthropic disturbances
of the landscape. Thus, in the Tocantins River in Brazil, 90%
of Lu. longipalpis was found on the edge of the forest, but in
the same river, after the construction of a hydroelectric
plant, the abundance in the most modified urbanized envi-
ronment was 4.8 times greater than in the rural-forest area
(Oliveira et al 2011, Vilela et al 2011), while in tourist develop-
ments the relative abundance is as high as 26% (Fonteles
et al 2018). These figures increase even more once Lu.
longipalpis is adapted to domestic environments such as

rural endemic AVL foci located in xerophilic or semi-arid
regions. In these habitats, the proportion of Lu. longipalpis
is again up to 3% in the forest, but reaches over 99% in the
bush (caatinga), and 78% in the highly anthropized environ-
ment or 42% in the coastal Atlantic landscape (Dias-Lima et al
2003, de Souza Freitas et al 2018). The number of individuals
captured also increases in the forest to peridomestic environ-
ments by 5–7 times to 250 times (Ferreira et al 2013, Pereira
Filho et al 2015).

In relation to the urban colonization of Lu. longipalpis
reported since the last decades of the twentieth century,
its spread from city to city was associated with the construc-
tion of highways and fishbone deforestation, and the net-
work of roads and intensity of exchange between nearby
towns (Oliveira et al 2018). In this way, the main cities, once
established Lu. longipalpis, act as an infestation and infection
hub, generating a radial spread which slows down as the
surrounding localities more favorable to the vector are colo-
nized, in São Paulo from 200 km/year to less than 25 km/
year (Oliveira et al 2016). This urban dispersion of AVL and
the urban increase in abundance of Lu. longipalpis at macro-
scale was related to vector populations with the pheromone
chemotype (S)-9-methylgermacrane-B, in contrast with the
cembrene-1 chemotype (Casanova et al 2015). However, in
terms of genetic diversity, hybridization between Lu.
longipalpis newly arrived urban settlers and older resident
rural ones better adapted to local environments was also
likely (Quintana et al 2019).

The dispersal of Lu. longipalpis within the city at the mac-
rohabitat scale is explained by occasional introductions of the
vector, which function as source populations spreading it to
the outskirts, through successive colonizations of the most
suitable peridomestic microhabitats. In Presidente Prudente,
São Paulo, the apparent “seed” of Lu. longipalpiswas located
in a flower nursery with abundant organic fertilizer, and then
this species progressively advanced through backyards with
henhouses (Prestes-Carneiro et al 2019), while in Rio de
Janeiro, Lu. longipalpis introduced in the Caju Cemetery
was unable to colonize the surroundings with completely
urbanized blocks (Brazil 2013). In Salvador, Bahia, the disper-
sion was directed toward the beach front while in Fortaleza,
Ceará, it remained far from the beach, demonstrating the
different spatial distribution of sites with environments con-
ducive to the vector (Silva et al 2014, Mota et al 2019).

Therefore, the urban abundance of Lu. longipalpis
depends not only on environmental strata but also on the
date-stage of colonization. The proportion of vectors may
increase from 9% in the early stages of urbanization, to
40% in the shared scenarios of AVL with cutaneous leishman-
iasis (Ribeiro da Silva et al 2019), to 90% in a period of
10 years as in Campo Grande, Mato Grosso do Sul, Brazil
(Oliveira et al 2012). In established urban foci, the relative
abundance of Lu. longipalpis usually ranges from 80 to 100%
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in mixed landscapes of shrubs, trees, animal shelters, and
human houses, although its presence may be low or nil in
non-urban surroundings and in the densely populated down-
town, such as a city in the State of São Paulo where the
rural:peri-urban:urban ratio was 1:8.6:3.3: respectively
(Colla-Jacques et al 2010). Therefore, the Normalized
Difference Vegetation Index (NDVI) or its variance as a mea-
sure of environmental heterogeneity of each stratummay be
better to explain the distribution of the vector, than political
boundaries, sectors of the health system, or cadastral char-
acterization as urban or rural.

Consequently, depending on the scale, the attributes used
for stratification, and the characteristics of the peridomestic
habitats, captures between neighboring sites within a city
can result in 1 to 1000 Lu. longipalpis, with a relative propor-
tion of this species ranging from 0.18 to 100% (Ximenes et al
2000, Figueiredo et al 2016). Furthermore, the clustering of
Lu. longipalpis in few sites and few traps discussed in the
next sections, recorded in rural and urban scenarios, from
Honduras to Brazil and Argentina, suggests that the micro-
scale is the best scale to explain the spatial distribution of this
vector, in order to obtainmodels that allow the development
of operational tools for its surveillance and control at the
focus level.

However, before discussing the microscale variables asso-
ciated with Lu. longipalpis, it is necessary to review some
studies on the distribution of canine AVL and human AVL at
the macroscale. The spatial spread of human and dog cases
was associated with massive human migrations due to de-
velopment projects or the search for better living conditions.
These events also generate changes in the landscape that
favor the colonization of Lu. longipalpis such as unplanned
urbanization. This synergistic confluence of cultural, environ-
mental, and biological drivers for the AVL was reported dur-
ing the construction of the Bolivia-Brazil pipeline in the State
of Mato Grosso do Sul (Pasquali et al 2019). Later, the first
urban records of Lu. longipalpis in the state of São Paulo, in a
locality near the border with Mato Grosso do Sul, date from
1997, but by 2014 the vector had been recorded in 164 São
Paulo municipalities. Regarding the temporal distribution,
2 years and 2 months passed between the first capture of
Lu. longipalpis and the first report of canine AVL, and one
more year until the first case of human AVL (Casanova et al
2015, Oliveira et al 2016). On the other hand, in established
urban foci, the canine AVL may or may not overlap with the
distribution of Lu. longipalpis, as occurs in downtown areas
with a high prevalence of infected dogs but without vectors.
These inconsistencies may be due to vertical and horizontal
transmission of AVL from dog to dog, to dog breeding and
sales networks, the structure of the stray dog population,
and the time elapsed since the introduction of the vector
and the parasite to a given locality, since more time may
imply less spatial agreement by the previous cited reasons.

Critical Site Characterization (Microscale)

Vectorial transmission of L. infantum in the Americas is main-
ly a microfocal event around domestic areas of rural and
urban environments. Human AVL incidence is a proxy of
the distribution of parasites, infected reservoirs, and people
prone to manifest the infection clinically, but also of the
contagious Lu. longipalpis distribution (Casanova et al
2013). Regardless of whether the environments are urban
or rural settings, one of the variables more frequently asso-
ciated with the clustered abundance of this vector at the
microscale is the availability of blood sources surrounding
the trap.

In this sense, Lu. longipalpis can be collected in several
places within an AVL focus, yet high abundance can only be
found in few areas, in few “critical sites” among them, and
usually in few animal shelters or hot spots within these sites.
The spatial auto-correlation of abundance for Lu. longipalpis
was estimated to be around 600 to 700 m (Fernández et al
2013), but their abundance can vary up to 1770 times be-
tween critical sites of the same focus, and even almost 30
times between a trap in an animal shed and one located
100 m away (Quinnell and Dye 1994). This clustering is fa-
vored by a low dispersion trend at the microscale when food
is available; capture-recapture studies in Brazil and Colombia
reported more than 90% recaptures at the release site, or
98% within 100 m to 300 m (Morrison et al 1993; De Oliveira
et al 2013a, Galvis-Ovallos et al 2018). Therefore, chicken
pens can act as a hot spot for vector clustering both as initial
colonization sites and in already established populations
(Fernández et al 2010, Silva et al 2019), as well as pigpens
(Figueiredo et al 2016), horse stalls in a Cavalry Regiment
(Dorval et al 2009), and a dog kennel in a peri-urban back-
yard (Dos Santos Brighente et al 2018), while the abundance
of Lu. longipalpis in aphotic areas of caves stresses the notion
of this species plasticity related to bat as a food source (de
Almeida et al 2019).

With regard to the relative attraction of each host to de-
termine a critical site, traps in pigpens yield 99% of the Lu.
longipalpis caught at a rural AVL focus, almost 30 times more
productive than the most productive intradomicile (Ferro
et al 1995), but pigs were deemed equivalent to cows when
forage ratio-biomass was computed (Morrison et al 1993). In
a focus of atypical AVL in Honduras, Lu. longipalpis was
caught 200 times more around cows than pigs (Carrasco
et al 1998), or horses in Brazil (Ximenes et al 1999). On the
other hand, related to the most frequent hosts in peri-urban
domestic landscapes, in one study, humans were more at-
tractive than dogs and equivalent to six chickens in terms of
body size (Quinnell et al 1992), although in other foci this
vector shows low anthropophilia (Morrrison et al 1993). In
a modeling attempt, the abundance of Lu. longipalpis was
weakly associated with the number of animals (Quinnell &
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Dye 1994), while in the field, a dwelling with 100 chickens
was 6 times more attracitve than peridomiciles with 45 to 50
chickens and dogs (Lopes et al 2019). A possible explanation
of these disparate results in addition to differences in acces-
sibility and host exposed surface biomass may be that some
approaches assume a linear response of the insects to the
gradient of olfactory cues, but this stimulus would increase in
shape by steps with the square root of the number of sour-
ces, along with the influence of velocity, turbulence and con-
vection of the odor plume, and the size of the release patch
(Andersson et al 2013).

The attractiveness of domestic animals could also gener-
ate design bias when as a precondition traps are located
close to henhouses or chicken perching trees to improve
the capture success rate, underestimating the “chicken” var-
iable in modeling attempts, and skewing results as to infec-
tion prevalence or blood index. Therefore, results from gut
content vary according to proximity to blood sources, thus
reporting that chickens are the main host in the outdoors
and dog indoors (Afonso et al 2012), or these are humans
(Sales et al 2015), marsupials, and combined sources involv-
ing human indoors and birds outdoors (Missawa et al 2008),
or birds and human equally and 8 times higher than dogs (de
Oliveira et al 2008).

Besides food, animal shelters provide themselves a rela-
tively undisturbed resting and breeding place, with shadow
and humidity. In a peri-urban/urban AVL focus in Sâo Paulo
State, Brazil, emerging traps had recently molted adults only
in houses with chicken coops, where the traps located
around chicken sheds were 7 times more productive than
the traps in leaf litter, clustering 61% of the captures in just
four traps (Casanova et al 2013). On the other hand, the
pigpens in rural Colombia, although also identified as a
breeding site, showed a more dispersed pattern at micro-
scale level (Ferro et al 1997), even though both in pigpens
and in chicken sheds, most of the larvae or emerging adults
were found surrounding the animal dwellings where organic
matter such as stool and fodder is degraded, dried, and
mixed with the soil instead of inside the shelter with water-
urine saturated and trampled ground.

The type of vegetation was also associated with the vector
at microscale, even specific trees, such as banana, guava,
coconut, and mango trees (Ribeiro da Silva et al 2019).
These trees provide shelter for the vectors by means of the
structure of their exposed roots, bark, and leaf axils, and they
could also serve as the preferred sugar sources, such as those
plants belonging to the Fabaceae family (Lima et al 2016);
however, the variable recorded as proportion of vegetation
coverage is more related to the shielding from sun irradiance
and rainfall flooding. Consistently, more Lu. longipalpis are in
cultivated areas and secondary woodland than in the savan-
na (Quinnell & Dye 1994). Vegetation-related variables were
associated with the presence of Lu. longipalpis in urban-rural

areas, in the State of Paraná, Brazil, in an area of 250 m
around the trap with mixed urban and herbaceous environ-
ments (Thomaz-Soccol et al 2018), and in different foci of
Argentina this vector was correlated with vegetation cov-
erage (Quintana et al 2019), and landscape NDVI micro-
heterogeneity (Berrozpe et al 2019). As for microhetero-
geneity in highly urbanized backyards, the hot spots of
Lu. longipalpis abundance were associated with the num-
ber of tree species, mean distance to water, and flower
pots (Santini et al 2012), the latter having also been as-
sociated with probable “seed” colonization of cities dis-
cussed at macroscale.

Besides the animal blood sources and the vegetation, oth-
er variable associated with Lu. longipalpis in the articles cited
in the last paragraph and other modeling attempts was the
proximity to river shores (Menezes et al 2015, Thomaz-Soccol
et al 2018). However, these results should be analyzed in the
context of the spatial distribution within the locality of the
human density, of the riparian gallery forest and microcli-
mate patches including soil moisture saturation, and of dif-
ferent qualities of housing and peridomestic yards. With re-
gard to house features, other studies with variables recorded
at microscale prove the bathroom or kitchen being located
outdoors to represent an environmental risk factor for hu-
man, but also the landscape suitability for Lu. longipalpis by
presence of gardens and decaying fruit in the backyard (Luz
et al 2020). In this sense, the house quality is a proxy for a
socio-economic complex of variables, as in a city of Misiones,
Argentina, where Lu. longipalpis in a hot spot modeling
showed that their abundance was associated negatively with
the percentage of households with lack of building materials
and economic deprivation, and positively with the percent-
age of surface covered by trees and bushes up to 50 m near
the house, and with the percentage of houses without elec-
tricity, so the area with more vectors seems to be halfway
between urban downtown and rural outskirts (Fernández
et al 2010).

The agreed preconditions for selecting capture sites, la-
beled as worse scenarios, best scenarios, or critical sites, act
as a quasi-controlled natural experiment design and so could
minimize certain associations. This statement has already
been discussed for chickens and animal dwellings, but is also
valid for organic matter in soil, trees, and relative humidity
vegetation (Costa et al 2019). Further, when these factors,
taken as qualitative variables with dichotomous or trichoto-
mous values, were added to characterize “receptivity levels”
for Lu. longipalpis presence, there was no association be-
tween the environmental theoretical risk and the actual
abundance of this species, but the analysis was performed
with different efforts of capture, and a mix of microhabitat
and macrohabitat factors; so the house with the greater cap-
ture of Lu. longipalpis was assigned to the intermediate level
of receptivity, although it had a large chicken coop, trees,
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and large quantities of organic matter in the soil (Vianna et al
2016).

The relationship between indoor and outdoor Lu.
longipalpis abundance is also modulated by the presence of
clustered animals in the peridomestic area, so this vector is
still the prevalent one in an anthropic domestic area but it is
usually up to 20 times higher in peridomicile than in domicile,
and it is 5 to almost 300 times more abundant in the peri-
domicile than in the extradomicile, where it is more plentiful
in the ground than in the canopy (Fonteles et al 2018, Mejía
et al 2018). However, the absolute and relative abundance of
Lu. longipalpis in the intradomicile may be higher than or
similar to that of the peridomicile depending on the season
and need for shelter, the structure-openness of the roof, the
distribution and competition from different blood sources,
and the domestic behavior of the other sympatric
Phlebotomine species (de Souza Freitas et al 2018). With
regard to intermediate domestic-peridomestic habitats as
verandas in tropical areas, these are sites of special interest
for AVL epidemiology at microscale, because the people can
be there during the peak of activity of Lu. longipalpis dressed
in indoor clothes yet exposed to an outdoor risk (Santini et al
2010). In an ecoturism area of Mato Grosso do Sul, Brazil, the
house with the highest captures had 83 times more Lu.
longipalpis in the chicken shed than the veranda, but in the
second house with more vectors (20 times more than the
remaining sites), their number was similar between the
chicken shed and the veranda (Andrade et al 2009).

Another usual measure associated with Lu. longipalpis
distribution at microscale is the sex ratio. Males tend to be
more abundant than females in light traps but also in host-
baited traps, but the ratio could vary slighter larger than one
to have only males, even between equivalent sites of the
same area, and between captures from different hours (de
Almeida et al 2019, Mota et al 2019). It was proposed that
the male bias in the sex ratio would increase with the
amount of captured individuals as a density-dependent
event to improve the recruitment rate success by swarming
(Quinnell and Dye 1994), so male pheromone adds individu-
als and arrests both sexes at the site of the semiochemical
release (Bell et al 2018). In this sense, the male sex phero-
mones on the host placed as lures increase five times the
whole Lu. longipalpis capture, the aggregated males toward
the night potentiates the attractiveness of the host odors,
and the response could also be modulated by the physiolog-
ical age of the Lu. longipalpis females or its infection (Bray
et al 2014). Conversely, the sex ratio found indoor or in rest-
ing places can have a higher proportion of females than the
peridomestic captures (Figueiredo et al 2016), while the 1:1
ratio was associated with peridomestic-domestic habitats
where the oviposition, breeding, resting and feeding place,
and the trap were located in the same spot (Pereira Filho
et al 2015 Silva et al 2016).

Temporal Distribution

The study of Lu. longipalpis distribution of presence and
abundance over time also requires defining the temporal
scale of analyses discriminating (a) macroscale long-period
trends in climate and environmental change, (b) seasonal
or annual modality due to population dynamics of the vector,
and (c) microscale hourly pattern that reflects the threshold
and level of phlebotomine activity.

However, as in the spatial-based studies, many factors
may interact between the scales, increasing the dispersion
of the results if they are not accurately controlled in the
analyses. The Lu. longipalpis abundance in a given day for
example correlates with climate variables with different lags
of time, as the trapping success is conformed by the size of
the population concurrent with the capture, the size of the
successive previous incremental or decremental cohorts, and
the activity during the trapping.

In the macroscale, the uneven distribution of Lu.
longipalpis abundance from 1 year to the next may be due
to long-term trends, pluri-annual cycles, or differences in
weather between the sampled years (Resende et al 2006).
However, in longitudinal studies, modifications also at spatial
microscale in food availability, habitats conducive to Lu.
longipalpis, and human interventions and practices at that
scale can be related to the difference in abundance or prev-
alence between years up to 4 times, not merely climate
variables (de Oliveira et al 2013b, Holcman et al 2013).
Conversely, captures in animal dwellings are more stable in
successive captures than open-air sites, acting as a microcli-
mate buffer that attenuates external weather conditions
(Quinnell and Dye 1994). In addition, some designs to study
the long-term temporal distribution of vectors at the regional
level change the capture site yearly or bi-yearly to avoid the
impact of the trapping on phlebotomine population or the
refusal of the householders, and so also changed the micro-
habitat modulators of Lu. longipalpis abundance.

The studies of annual distribution of Lu. longipalpis usually
show that it is present throughout the year, with a seasonal
pattern related with climate variables, except in areas with
periods of extreme weather conditions, when the adult vec-
tor disappear. With respect to the peaks of capture and the
climate modulation of previous generations, the time lags
are conditioned by biological parameters related with the life
cycle, for instance the length of the larval or egg to adult
periods estimated in 38–56 days (Morrison et al 1995a),
7 days for female longevity (Cortez et al 2007), 0.90 or
0.69–0.79 daily for male survival rate, and 0.69–0.89 for
female survival rate, and 5 days for minimum gonotrophic
cycle (De Oliveira et al 2013a, Galvis-Ovallos et al 2018).
Furthermore, the correlation between abundance and cli-
mate also depends on the recording of the appropriate de-
pendent variables as for instance the imaginal emergence
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peak that relies on larval cycles may be strongly related with
variables such as water deficit (Casanova et al 2013). On the
other hand, the time intervals between the peaks of Lu.
longipalpis and the peaks of human or canine AVL cases, on
this annual time scale, are also shifted from each other, as
the latter are related to the incubation period of the para-
sites in the mammalian host (de Ximenes et al 2006). Thus,
simultaneous surveys of vectors and infection can link differ-
ent seasons of transmission, the vectors peak related to the
next AVL incidence rate, and the host infection prevalence
related with the previous vector peak although they may
have a similar but displaced pattern (Michalsky et al 2009,
Silva et al 2014).

The seasonal current and potential distribution of vector
abundance in ecological niche modeling at different spatial
scales was associated with climate variables but also with
vegetation-related variables as a proxy of climate and envi-
ronmental suitability such as the normalized difference veg-
etation index (NDVI). In Brazil, at country level, Lu. longipalpis
maximum entropy predictive models show precipitation, day
temperature, and precipitation of the warmest quarter as
the main predictors of abundance (Andrade-Filho et al
2017). Also in Brazil, but at state scale, the annual precipita-
tion and NDVI are the variables that most contribute to ex-
plain the temporal distribution of Lu. longipalpis or the cases
of AVL, while temperature seasonality, or precipitation either
in wettest or in the driest periods, varies in relative weight
according to semi-arid environments of Bahia or tropical
ones in Mato Grosso do Sul (Almeida et al 2013, Rodgers
et al 2019). Still at regional scale in Colombian Andes region
together with the mean and seasonal precipitation-related
variables, the slope also explains the vector distribution, sug-
gesting that these variables could be a proxy for the moisture
of the soil (Ferro et al 2015).

In the AVL focus spatial scale, Lu. longipalpis in Corrientes
city, Argentina, NDVI and land surface temperature (LST)
were the significant variables during the summer and low
urban coverage during the winter (Berrozpe et al 2019),
while in Clorinda city, Argentina, LST was during the day
and night but with lags of 2 months, and NDVI and normal-
ized difference water index (NDWI) with lags of 2 and
3 months (Gómez-Bravo et al 2017). Additionally, at the same
spatial level in Mato Grosso do Sul, Brazil, Lu. longipalpis
abundance was correlated by use of the Spearman coeffi-
cient with maximum temperature and relative humidity
(Almeida et al 2010), with temperature and less with rainfall
(Lara-Silva Fde et al 2015), and with the mean temperature,
cumulative rainfall, and negatively with relative humidity
(Michalsky et al 2009).

The disparate results presented in previous paragraphs
about the association between Lu. longipalpis with climate
variables shows that the results can vary according to the
climate range in each region. In addition, the weight of these

explanatory variables can change throughout the year, be-
coming significant above or below a threshold during critical
periods or lack significance in periods when these variables
fluctuate within an optimal “window.” This inconsistency in
the correlation of variables with the temporal distribution of
Lu. longipalpis is evident with a discontinuous variable such
as rainfall, with vectors peaking before, during, or after the
rain peak (Mota et al 2019, Ribeiro da Silva et al 2019) accord-
ing to the characteristics of the landscape that provides shel-
ter or prevents flooding. However, again these correlations
become more significant when lag times are contemplated
so positive association was found between female abun-
dance and relative humidity-rainfall 21 days earlier
(Morrison et al 1995a), and the abundance of both sexes with
the rainfall 30–60 days before the collection (Holcman et al
2013, Costa et al 2019) with the temperature 20 days before
collection (Lopes et al 2019), or with rainfall and humidity but
with negative correlation with temperature (Pereira Filho
et al 2015). Regarding annual modality and climate variables
lag times, Lu. longipalpis was trimodal in Mato Grosso do Sul
and Colombia (Morrison et al 1995a, Brilhante et al 2015); in
Natal, the males were bimodal correlated with relative hu-
midity and wind up to 6 weeks earlier, and females were
unimodal peaking 3 months after peak of temperature and
2 weeks after the increase of wind, but with a lag of 11 weeks
with relative humidity (Ximenes et al 2006).

On the other hand, many studies did not find a significant
correlation between climate variables and Lu. longipalpis
temporal distribution, although the authors usually highlight
the similar pattern between the plotted rainfall or tempera-
ture curves and the vector histogram. This lack of statistical
significance besides the issues already discussed above may
be due to the low range of variation of the variable measured
along the year or a variable with large variation but with its
correlation not disaggregated by season. Additional sources
of inconsistencies are related to design problems, weather
data recorded on meteorological stations up to 100 km from
the captures sites, “mean” data without relation with the
actual date of capture so averaging values before and after
the trapping, and linear coefficients to explain not-linear
associations.

The microscale temporal distribution, the hourly pattern,
also varies between places and habitats, showing peaks in
the evening in rural peridomiciles (Morrison et al 1995b), at
10 or 11 PM according to the sex (Ximenes et al 2006), at
midnight in intradomiciles (Rebêlo et al 2001), or bimodal in
the twilight hours of dusk and dawn (Infran et al 2017). The
hourly activity seems more related to the light cycles, sunset
time, and even artificial lighting than to internal clocks, since
in the photic zone of caves nocturnal activity is 33 times
greater than diurnal activity, while in the aphotic area it is
only 0.66 times (Campos et al 2017). With regard to moon-
light, it was not correlated with the abundance of Lu.
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longipalpis by one study (Ximenes et al 2006), but different
wavelengths showed different attractiveness yet barely no
alteration of the sex ratio (Lima-Neto et al 2018).

However, Lu. longipalpis abundance by hour and by night,
like most of the data used looking for correlations at tempo-
ral and spatial scale, is modulated by spatial and temporal
microscale events. One of these, the wind, referred to in the
title of this review, can suddenly change speed and direction
around the capture site. Thus, the wind not only has a direct
effect on the flight capability, but also has a modulatory
effect on the abundance of vectors via the velocity and in-
tensity of attractive, repellent, or pheromonal volatile
plumes that reach different Lu. longipalpis populations at
different distances from the trap.

Conclusions: Modeling for Surveillance and Control

Control-successful interventions reported up to now were
designed as blanket insecticide application in small localities.
In Isla Margarita, Venezuela, it was performed with intrado-
mestic residual spraying with λ-cyhalothrin 25 mg/m2 and
spatial fogging of fenitrothion 30 g/ha around the houses
(Feliciangeli et al 2003). In La Paz department, Bolivia, it
was sprayed deltamethrin 25 mg/m2 indoors, outdoors,

and in peridomestic dwellings, controlling the Lu. longipalpis
population inside the house for up to 10 months, although
the initial indoor density was as low as 0.7 females/house/
night and the results were not controlled by seasonality (Le
Pont et al 1989).

However, regular city-wide intervention strategies are
not cost-effective in large cities, besides the fact that the
concept of intervention around each case after the diag-
nosis is less effective than that in arbovirus due to leish-
maniasis’ longer periods of incubation. In addition, in
some urban foci, the human AVL tends to decrease along
the years despite the presence of Lu. longipalpis and
canine AVL as in Dracena, Brazil (Cortez et al 2007),
and Puerto Iguazú, Argentina (Lamattina et al 2019), so
with few human cases it is more difficult to justify a
budget for blanket interventions when so many other
actions in public health must be prioritized.

This review shows that it is feasible to characterize the
uneven spatial distribution of Lu. longipalpis to identify at
least at microscale the critical site-hot spots of initial vector
presence, so as to focus the surveillance on them for early
warning and timely intervention. In addition, since these crit-
ical site-hot spots are also the places where Lu. longipalpis is
most abundant and persistent over time, if these sites be-
have as source populations for surrounding places, a focused
intervention only on the critical sites could effectively control
vectorial transmission of AVL throughout locality. This popu-
lation dynamics hypothesis is supported by the gene flow
between domestic and forest populations (Márquez et al
2001), although sink populations could act as temporary shel-
ters during insecticide intervention (Oliveira et al 2012).
Therefore, this approach would allow an operational strategy
by concentrating the effort only on the few sites more suit-
able for Lu. longipalpis. Thus, after an analytical review of the
models, to find themost significant and frequent explanatory
variables of the presence and abundance of Lu. longipalpis
according to their degree of evidence, a “model of models”
would be proposed for field validation. This resulting model
should be able to identify sequentially the following: (1) the
sites most possible to be critical at macrohabitat scale (buffer
up to 600 m) with remote sensor images and census second-
ary data; (2) among these sites, the places most probable to
be macrohabitat critical sites according to local knowledge
and field surveys; and (3) within themacrohabitat most prob-
able critical sites the hot spots most likely to be the micro-
habitat critical sites (up to 50 m), through field surveys that
include the amount and distribution of blood sources and
vegetation coverage; and (4) finally the strategy should be
able in turn to feed back the site selection if any of the critical
conditions change (Fig 1).

Likewise, for this model to be operational, controlled field
validation in different scenarios will be required, as well as a
user-friendly interface and an application manual for local

Fig 1 Proposal for surveillance-control of Lutzomyia longipalpis in a
schematic city stratified as a center (A); heterogeneous landscape of
green patches, urban construction and peri-urban population density
(B); peri-urban-rural periphery (C); and a river crossing the city (D), by
selecting the possible critical sites of the macrohabitat (600 m buffer
zone) (1), most probable macrohabitat critical sites (2), most likely
microhabitat hotspots (50 m buffer zone), and feedback if critical
conditions change (4)

Lutzomyia longipalpis, Gone with the Wind



agents describing the methodology for identifying critical
sites, suitable intervention alternatives, and follow-up
through appropriate impact indicators. Interventions will
range from risk awareness at possible critical sites to inte-
grated vector management at probable ones, with different
degrees of intensity between the microhabitat and the mac-
rohabitat areas, according to the significant variables identi-
fied by the model.
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