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Shiga toxin producing Escherichia coli may damage the central nervous system before
or concomitantly to manifested hemolytic–uremic syndrome symptoms. The cerebellum
is frequently damaged during this syndrome, however, the deleterious effects of Shiga
toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral
means. The aim of this study was to determine the cerebellar compromise after
intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the
cerebellar blood–brain barrier permeability, behavioral task of cerebellar functionality
(inclined plane test), and ultrastructural analysis (transmission electron microscope).
Intravenous administration of vehicle (control group), sub-lethal dose of 0.5 and 1 ηg
of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of
three independent experiments were performed for each study (n = 6). Blood–brain
barrier resulted damaged and consequently its permeability was significantly increased.
Lower scores obtained in the inclined plane task denoted poor cerebellar functionality
in comparison to their controls. The most significant lower score was obtained after
5 days of 1 ηg of toxin administration. Transmission electron microscope micrographs
from the Stx2-treated groups showed neurons with a progressive neurodegenerative
condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered
the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar
parenchyma and produced cell damaged with significant functional implications in the
test balance.

Keywords: cerebellum, neurodegeneration, transmission electron microscopy, fluorescence microscopy, blood–
brain barrier

Abbreviations: BBB, blood–brain barrier; HUS, Hemolytic–Uremic Syndrome; Stx 2, Shiga toxin 2; TEM, transmission
electron microscopy.
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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) causes
hemorrhagic colitis which may leads to HUS (O’Brien and Kaper,
1998), resulting in symptoms which include: thrombocytopenia,
microangiopathic hemolytic anemia, and acute renal failure
(Proulx et al., 2001).

At present, Argentina has the highest number of HUS cases
with about 420 new cases reported annually, affecting 17/100,000
children under the age of five (Rivas et al., 2010). It has been
reported that the mortality rate derived from HUS ranges up
to 5% of the cases, and between 7 and 40% when the central
nervous system (CNS) is involved (Eriksson et al., 2001; Noris
and Remuzzi, 2005; Repetto, 2005; Oakes et al., 2006; Magnus
et al., 2012). Furthermore, in 2011, Europe’s largest reported
STEC outbreak started in northern Germany had higher rate of
neurologic complications (Trachtman et al., 2012). Probably due
to a new variant, which expresses not only the potent Stx2, but
also enteroaggregative elements that conferred a major toxicity
(Frank et al., 2011; Weissenborn et al., 2012).

Damage in the CNS may occur before or concomitantly
with other symptoms of the systemic HUS disease (Brascher
and Siegler, 1981; Karmali et al., 1985). Common clinical signs
of severe CNS injury included focal seizures, changes in the
level of consciousness (from lethargy to coma), hemiparesis,
descerebrate posture, cortical blindness, ataxia, cranial nerve
palsy, hallucinations, and brain stem symptoms (Gianantonio
et al., 1973; Cimolai et al., 1992; Hamano et al., 1993; Tapper
et al., 1995; Hager et al., 1999). Mice models of Stx2 intoxication
matched with neurological symptoms observed in human
patients and others common in rodents: lethargy, spasm-like
seizure, reduced spontaneous motor activity, abnormal gait, hind
limb paralysis, pelvic elevation and shivering (Obata et al., 2008;
Tironi-Farinati et al., 2013). In addition, studies performed by
TEM revealed subtle but significant changes in the brains of
animal administered with high-dose Stx, these changes included
neuronal, fiber, and glial ultrastructural alterations. The principal
areas affected were neocortex, cerebellum and basal ganglia (Fujii
et al., 1994, 1996, 1998; Mizuguchi et al., 1996; Fletcher et al.,
1999; Goldstein et al., 2007).

It has been observed that the cerebellum is frequently
damaged in patients with HUS (Weissenborn et al., 2012). Most
frequent neurologic symptoms included: dysdiadochokinesis,
dysmetria, intention tremor, cerebellar ataxia, dysarthria, and
nystagmus (Weissenborn et al., 2012). However, research in this
field has been scarce requiring a more integrative approach
(Mizuguchi et al., 1996; Fujii et al., 1998; Mewasingh et al.,
2003). Therefore, the current work attempts to integrate the
physiological, behavioral and ultrastructural implications of
cerebellar functioning caused by Stx2 addressed for the first time.

MATERIALS AND METHODS

Sub-Lethal Dose
The canonical Stx2 used was obtained from phage 933W, named
Stx2a (Plunkett et al., 1999). It was purchased at Phoenix

Laboratory, Tufts Medical Center, Boston, MA, USA and were
checked for lipopolysaccharide (LPS) contamination by the
Limulus amoebocyte lysate assay. It contained <10 pg LPS/ng
of pure Stx2. Different amounts of Stx2 (5–0.44 ηg per animal)
or vehicle were intravenously (i.v.) administered in mice, as
previously described (Tironi-Farinati et al., 2013). Survival time
was considered when 100 % of the animals survived with an
administration of 1 ηg of Stx2 or less amount for at least 8 days.
Also it was observed that under these dose mice did not die even
at day 10. Therefore, this amount was considered sub-lethal and
selected to use for the present work.

Animals
Male NIH mice (25–30 g) were housed in an air conditioned
and light-controlled (lights between 07:00 and 19:00 h) animal
facility. Test animal were obtained from animal facility center
from Administración Nacional de laboratorios e Institutos de la
Salud (ANLIS), Malbrán, Argentina. Mice were provided with
food and water ad libitum. They were daily monitored at the same
time for neurological manifestations from the beginning of the
experiments until the last day.

For all studies a set of three independent experiments were
performed. Mice were divided into three groups (n = 6):
animals treated with vehicle (control), with a sub-lethal i.v.
administration of Stx2 (1 ηg per mouse), and with half of sub-
lethal i.v. administration of Stx2 (0.5 ηg per mouse). The three
groups were tested for behavioral and ultrastructural studies
following Stx2 administration.

The experimental protocols and euthanasia procedures were
reviewed and approved by the Institutional Animal Care and
Use Committee of Buenos Aires University School of Medicine
(Resolution N◦ 2437/2012). All procedures were performed in
accordance with the guidelines for care and use of experimental
animals (EEC Council 86/609).

BBB Permeability Test
This test was performed, as described by (del Valle et al., 2008).
Mice were divided into two groups (n = 4): animals were i.v.
treated with saline as vehicle (control group) or with a sub-lethal
administration of 1 ηg of Stx2. After their respective treatments at
day 4 they were perfused transcardially with 0.9% NaCl solution
followed by a solution with 4% paraformaldehyde, and 1% Evans
Blue (EB) in 0.1 M phosphate buffer solution (PBS) [fixative
per animal weight (ml/g)]. Cerebella were removed from the
skull and post-fixed with the same fixative solution (without
the EB staining) for 2 h (del Valle et al., 2008). Cerebellar
coronal sections (25 μm thick) were mounted on slides with
a solution of glycerol and PBS (3:1) and were examined under
Olimpus confocal microscope Fluoview FV1000 (Melville, NY,
USA). The staining with EB dye was visualized by excitation
with 543-nm laser beams (green zone) and visualized as red
fluorescence.

Inclined Plane Test
The inclined plane test consists in a platform of 1 meter long and
30 cm wide, with an analog protractor and hinged base, elevated
at 5◦ intervals until the animal slipped backwards (Chang et al.,
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FIGURE 1 | A sub-lethal dose of Shiga toxin 2 (Stx2) increases blood–brain barrier (BBB) permeability in the cerebellum. Evans blue (EB) staining was
employed to show permeability of the BBB (A–F). Saline-treated cerebellum (A–C). Fluorescence micrograph failing to detect EB staining (A). Light microscope
micrograph showing the same saline-treated area (B). Merge micrograph between micrographs (A) and (B) (C). Stx2-treated cerebellum (D–F). Fluorescence
micrograph showing EB staining in the parenchyma of Stx2-treated cerebellum (D). Light microscope micrograph showing the same Stx2-treated area (E). Merge
micrograph between micrographs (D) and (E) (F). Hematoxylin & Eosin staining of the observed area of the cerebellum showing the three layers involved in the
staining of EB: M, molecular; P, Purkinje and G, granular layers (G). Negative control of a cerebellum by not adding EB (H). Quantification of BBB permeability in the
cerebellum (I). Significant differences between toxin-treated and control group (∗p < 0.05). The scale bar in (G) applies to all micrographs.

2008; Lekic et al., 2011). The maximum angle at which a mouse is
able to maintain its position for at least 5 seconds constitutes the
inclined plane score (Wells et al., 2003). The inclined plane score
was determined in animals injected with vehicle or 0.5 and 1 ηg
of Stx2 at day 1, 3, 5 and 8 days following respective treatments.

Transmission Electron Microscopy
TEM analysis was performed to study ultrastructural changes
in the cerebellum following the treatments described in Section

“Animals”. Mice were anesthetized with Sodium pentobarbital
(60 mg/kg) and perfused transcardially with 0.9% NaCl solution
followed by 2.5% glutaraldehyde in 0.1 M phosphate buffer
[fixative per animal/weight (ml/g)]. Brains were removed from
the skull and post-fixed in the same fixative solution for 2 h.
Samples of cerebella (3 mm2 thick) were dissected and collected
in 0.1 M phosphate buffer. The samples were first assessed
by light microscopy with blue toluidine to select the areas
for TEM. Ultrathin sections were cut from selected areas and
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then contrasted with 1% osmium tetroxide and 1% uranyl
acetate, dehydrated and flat-embedded in Durcupan (Priestley
et al., 1992). The sections were contrasted with lead citrate and
then examined and photographed on a Zeiss 109 TEM (Jena,
Germany). Adobe Photoshop software was used in the assembly
of images (Adobe Systems Inc., San Jose, CA, USA).

Neuronal damage caused by Stx2 was determined by EM and
consequently quantified. Neuronal damage was considered when
gathered at least one of these criteria: cell edema, vacuolated
cytoplasm, hypertrophic axons and/or retracted cytoplasm.
Quantification of damaged Purkinje cells was determined and
expressed as a percentage of the total number of Purkinje neurons
in an area of 3721 μm2.

Statistical Analysis
The data are presented as mean ± SEM. In the case of BBB
permeability assay and damaged Purkinje cells analysis, statistical
significance was performed using one-way analysis of variance
(ANOVA) followed by Student–Newman–Keuls post hoc tests. In
the case of comparison of different treatment groups at different
time points in the cerebellar functionality test, two ways analysis
of ANOVAwas used followed Bonferroni post hoc test (GraphPad
Prism 4, GraphPad Software, Inc.). The criterion for significance
was p < 0.05 for all the experiments.

RESULTS

BBB Permeability of Cerebellum was
Increased by Stx2
It has been reported that Stx2 can pass through the BBB
affecting the cell parenchyma (Goldstein et al., 2007). To
determine whether the toxin changes BBB permeability the EB
dye was perfused in each treated-mice group. Mice injected
i.v. with vehicle showed no permeability to the EB dye
(Figures 1A-C,G,H), indicating that the BBB was conserved. In
contrast, mice injected with 1 ηg of Stx2 showed an intense
fluorescence staining in the parenchyma, indicating that EB
succeeded to pass through the BBB to the cerebellar parenchyma
(Figures 1D–F). Therefore, i.v. administration of Stx2 increased
the BBB permeability (Figure 1I).

Cerebellar Functionality was Altered by
Stx2
As Stx2 treatment provoked a deleterious effect on the BBB by
increasing its permeability we asked whether the toxin may also
alter cerebellar functionality. For that purpose, a behavioral test
was made to evaluate the sensory-motor function in combination
with motor skills (hindlimb strength) on an inclined plane
which involved the cerebellar functionality. Lower scores denoted
poor cerebellar functionality by the Stx2-treated animals in
comparison to their controls. The most significant lower score
was obtained in the higher dose group (1 ηg) after five days
of toxin administration (Figure 2). The control group (vehicle)
showed the best performance in the task (highest score), when
compared to the animals treated with 0.5 or 1 ηg of Stx2.

FIGURE 2 | Changes in cerebellar functionality by Stx2: quantification
of inclined plane scores at different days and for different treatments.
Significant differences between toxin-treated and control groups at the same
day (∗p < 0.05). Significant differences between 1 ηg toxin-treated and 0.5 ηg
toxin-treated groups at the same day (∗∗p < 0.05).

Stx2 Caused Profound Ultrastructural
Alterations in Purkinje Cells and
Granular Layers
Conserved Purkinje cells of the cerebellum from the vehicle-
treated group showed visible pale nuclei and well-dispersed
chromatin, intact cytoplasmic and nuclear membranes, and
intact cytoplasm (Bishop et al., 1980) (Figure 3A). In contrast,
neurons from the Stx2-treated group showed a progressive
neurodegenerative condition in a dose-dependent manner
(Figures 3B,C,G) compared to the vehicle-injected group
(Figure 3A,G). Five days after administration of 0.5 ηg of Stx2
the nuclei of Purkinje cells started to become shrunk, eccentric
and with edema (Figure 3B). In addition the bulk of chromatin
was more condensed. Cytoplasms became vacuolated and
electron-dense, and the axons were hypertrophic (Figure 3B).
In addition to this, granular cells from the granular layer
displayed similar ultrastructural alterations: nuclear edema,
discontinuous nuclear membrane, vacuolated and shrunken
cytoplasm (Figure 3E) a condition found in models of severe
encephalopathies (Yu et al., 1971). This was not observed in
granular cell layer from vehicle-treated-animals (Figure 3D).
When Stx2 was administered more concentrated (1 ηg) a
more profound ultrastructural alteration that resembled a
more neurodegenerative condition was observed. Purkinje cells
were found with abundant edema and retracted cytoplasm
(Figure 3C). Also, at this amount of toxin, cells from the granular
layer become shrunk, vacuolated and with necrotic appearance
(Figure 3F).

DISCUSSION

Motor behavioral alterations assessed by the inclined plane test
may be related to damage of cerebellar cells. In this report,
the deleterious effect of sublethal intravenous Stx2 in the
cerebellum was demonstrated using behavioral, ultrastructural,
and physiological methodologies. Therefore, the current
results mimic cerebellar compromise usually reported in
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FIGURE 3 | A Sub-lethal dose of Stx2 causes cell damage in the cerebellum: dose response damage in Purkinje cells (A–C). dose response damage in
cells from the granular cell layer (D–F). Vehicle (A,D). Treatment with 0.5 ηg of Stx2 (B,E).Treatment with 1 ηg of Stx2 (C,F). Quantification of the percentage of
damaged neurons (G). Results are expressed as a percentage of the total number of neurons in an area of 3721 μm2. Significant differences between toxin-treated
and control groups (∗p < 0.05). Significant differences between 1 ηg toxin-treated and 0.5 ηg toxin-treated groups (∗∗p < 0.05). nu, nucleolus; n, nucleus; P,
Purkinje cell; e, edema; a, axon; pi, pycnotic cell; g, granular cell; asterisk, cell membrane; arrow, cell membrane. The scale bar in (A) applies to micrographs (B) and
(C). The scale bar in (E) applies to micrograph (F).

patients with neurological manifestations derived from HUS
(Hager et al., 1999; Steinborn et al., 2004; Donnerstag et al.,
2012).

The inclined plane task is a behavioral test that reveals
a cerebellar sensory-motor compromise. It tests the animal’s
ability to maintain its position and thus can be used as an
index of hindlimb strength (Fehlings and Tator, 1995), and
for determining cerebellar functionality in experimental animal
models of cerebellar lesions like cerebellar ataxia and cerebellar
hemorrhage (Fehlings and Tator, 1995; Wells et al., 2003; Chang
et al., 2008; Lekic et al., 2011). In addition, the integrity of
pyramidal and extrapyramidal systems may also be considered
in the performance of the task since peripheral Stx2 alters the

functionality of these structures as we previously described (Pinto
et al., 2013; Tironi-Farinati et al., 2013). The treatment of a
sub-lethal administration of Stx2 caused low performance in the
inclined plane task, in a dose response manner, during the early
period of assessment in comparison to controls.

MRI studies in children with diarrhea associated to HUS
showed nonspecific abnormalities in the cerebellum and these
studies failed to show any correlation between the onset of
neurological symptoms and MRI visible lesions (Donnerstag
et al., 2012). Furthermore, the extent of these lesions did
not correlate with the severity of neurological symptoms
(Weissenborn et al., 2012). In contrast to this, peripheral or
central administration of Stx2 succeeded to show by TEM
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deep alterations of the encephalon at the ultrastructural level
(Fujii et al., 1996, 1998, Goldstein et al., 2007). Moreover, in the
present work we certainly found a correlation between the altered
ultrastructure and the behavioral and physiological abnormalities
observed in toxin-treated animals. Therefore, the TEM technique
constitutes a reliable tool to observe evident ultrastructural
alterations in the cerebellum not detected by clinical routine
imaging techniques.

In a previous work, we found a neurodegenerative
ultrastructural phenotype in the brain striatum of mice (Tironi-
Farinati et al., 2013). In the present work we observed similar
findings in the cerebellum ofmice. Sub-lethal Stx2 administration
showed deep signs of neuronal damage. Purkinje and granular
cells showed a degenerative condition in a toxin-dose response
manner leading to cell death and this may occur through Gb3
receptor. It has been reported that Stx2 binds to Gb3 receptor in
neurons, including Purkinje and granular cells in the cerebellum
(Obata et al., 2008). Cerebellar cells in neurodegenerative
conditions associated with disease were frequently found in
animal models (Sato et al., 2012) or by drug injury (Sobaniec-
Lotowska, 2001). Overall, the altered changes observed in these
neurons reflect a pathological condition in Stx2-treated mice.
The precise cell mechanisms involved in the neuropathology are
still unknown and are under current investigation.

Other subtypes of Stx2 have been reported to produce
neurological compromise. It has been reported that Stx2c and
Stx2d caused damaged in the central nervous system (neuronal
and endothelial ultrastructural alterations) and neurological
symptoms (encephalopathy syndrome) in mice experimental
models (Fujii et al., 1994; Amran et al., 2013), similar to Stx2a
as it was observed in the present work and in a previous study
by our group (Tironi-Farinati et al., 2013). In addition Stx2e
induced the breakdown of the BBB and neurological disturbance

in a porcine model (Meisen et al., 2013), a similar finding to our
results.

In light of conclusive data presented, sub-lethal Stx2 altered
the BBB permeability in the cerebellum. This event allowed the
toxin to penetrate the cerebellar parenchyma that led to the
observed cell damage. Previous data presented by us and by other
colleagues demonstrated the capacity of the toxin to cross the
BBB in other brain areas (Mizuguchi et al., 1996; Fujii et al.,
1998; Goldstein et al., 2007). However, this is the first report
acknowledging BBB permeability by the toxin in the cerebellum.
This experimental model allows us to explain the cerebellar
syndrome described in patients with HUS and may provide the
basis for future research in prevention of neurologic damage.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

These studies were supported by CONICET (National
Research Council, Argentina) Grant PIP 112-201101-00901
and Universidad de Buenos Aires (UBA) grant UBACYT
20020120100353BA to JG.

ACKNOWLEDGMENT

We acknowledge Laura R. Guelman for allowing us to use the
inclined plane test.

REFERENCES
Amran, M. Y., Fujii, J., Kolling, G. L., Villanueva, S. Y., Kainuma, M.,

Kobayashi, H., et al. (2013). Proposal for effective treatment of Shiga toxin-
producing Escherichia coli infection in mice. Microbiol. Pathog. 65, 57–62. doi:
10.1016/j.micpath.2013.09.008

Bishop, G. A., McCrea, R. A., and King, J. S. (1980). An analysis of the morphology
and cytology of HRP labeled Purkinje cells. Brain Res. Bull. 5, 563–574. doi:
10.1016/0361-9230(80)90263-4

Brascher, C., and Siegler, R. L. (1981). The hemolytic-uremic syndrome. West J.
Med. 134, 193–197.

Chang, M. W., Young, M. S., and Lin, M. T. (2008). An inclined plane
system with microcontroller to determine limb motor function of laboratory
animals. J. Neurosci. Methods 168, 186–194. doi: 10.1016/j.jneumeth.2007.
09.013

Cimolai, N., Morrison, B. J., and Carter, J. E. (1992). Risk factors for the central
nervous system manifestations of gastroenteritis-associated hemolytic- uremic
syndrome. Pediatrics 90, 616–621.

del Valle, J., Camins, A., Pallàs, M., Vilaplana, J., and Pelegrí, C. (2008). A new
method for determining blood-brain barrier integrity based on intracardiac
perfusion of an Evans Blue-Hoechst cocktail. J. Neurosci. Methods 74, 42–49.
doi: 10.1016/j.jneumeth.2008.06.025

Donnerstag, F., Ding, X., Pape, L., Bültmann, E., Lücke, T., Zajaczek, J., et al.
(2012). Patterns in early diffusion-weighted MRI in children with haemolytic
uraemic syndrome and CNS involvement. Eur. Radiol. 22, 506–513. doi:
10.1007/s00330-011-2286-0

Eriksson, K. J., Boyd, S. G., and Tasker, R. C. (2001). Acute neurology and
neurophysiology of haemolytic–uraemic syndrome. Arch. Dis. Child. 84, 434–
435. doi: 10.1136/adc.84.5.434

Fehlings, M. G., and Tator, C. H. (1995). The relationships among the
severity of spinal cord injury, residual neurological function, axon
counts, and counts of retrogradely labeled neurons after experimental
spinal cord injury. Exp. Neurol. 132, 220–228. doi: 10.1016/0014-4886(95)
90027-6

Fletcher, B., Taylor, F. B. Jr., Tesh, V. L., DeBault, L., Li, A., Chang,
A. C., et al. (1999). Characterization of the baboon responses to shiga-
like toxin. descriptive study of a new primate model of toxic responses
to Stx-1. Am. J. Pathol. 154, 1285–1299. doi: 10.1016/S0002-9440(10)
65380-1

Frank, C., Werber, D., Cramer, J. P., Askar, M., Faber, M., der
Heiden, M., et al. (2011). Epidemic profile of shiga-toxin: producing
Escherichia coli O104:H4 outbreak in Germany: preliminary
report. N. Engl. J. Med. 365, 1771–1780. doi: 10.1056/NEJMoa1
106483

Fujii, J., Kinoshita, Y., Kita, T., Higure, A., Takeda, T., Tanaka, N., et al. (1996).
Magnetic resonance imaging and histopathological study of brain lesions in
rabbits given intravenous verotoxin 2. Infect. Immun. 64, 5053–5060.

Fujii, J., Kinoshita, Y., Yamada, Y., Yutsudo, T., Kita, T., Takeda, T.,
et al. (1998). Neurotoxicity of intrathecal Shiga toxin 2 and
protection by intrathecal injection of anti-Shiga toxin 2 antiserum
in rabbits. Microbiol. Pathog. 25, 139–146. doi: 10.1006/mpat.1998.
0220

Frontiers in Microbiology | www.frontiersin.org 6 February 2016 | Volume 7 | Article 133

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


D’Alessio et al. Stx2 Affects the Cerebellum

Fujii, J., Kita, T., Yoshida, S., Takeda, T., Kobayashi, H., Nakata, N., et al.
(1994). Direct evidence of neuron impairment by oral infection with verotoxin-
producing Escherichia coli O157:H-in mitomycin-treated mice. Infect. Immun.
62, 3447–3453.

Gianantonio, C. A., Vitacco, M., Mendilaharzu, F., Gallo, G. E., and Sojo,
E. T. (1973). The hemolytic-uremic syndrome. Nephron 11, 174–192. doi:
10.1159/000180229

Goldstein, J., Loidl, C. F., Creydt, V. P., Boccoli, J., and Ibarra, C. (2007).
Intracerebroventricular administration of Shiga toxin type 2 induces striatal
neuronal death and glial alterations: an ultrastructural study. Brain Res. 1161,
106–115. doi: 10.1016/j.brainres.2007.05.067

Hager, A., Staudt, M., Klare, B., von Einsiedel, H. G., and Krägeloh-Mann, I. (1999).
Hemolytic-uremic syndromewith involvement of basal ganglia and cerebellum.
Neuropediatrics 30, 210–213. doi: 10.1055/s-2007-973492

Hamano, S., Nakanishi, Y., Nara, T., Seki, T., Ohtani, T., Oishi, T., et al.
(1993). Neurological manifestations of hemorrhagic colitis in the outbreak of
Escherichia coli O157:H7 infection in Japan. Acta Paediatr. 82, 454–458. doi:
10.1111/j.1651-2227.1993.tb12721.x

Karmali, M. A., Petric, M., Lim, C., Fleming, P. C., Arbus, G. S., and Lior, H.
(1985). The association between idiopathic hemolytic uremic syndrome and
infection by verotoxin-producing Escherichia coli. J. Infect. Dis. 151, 775–782.
doi: 10.1093/infdis/151.5.775

Lekic, T., Rolland, W., Hartman, R., Kamper, J., Suzuki, H., Tang, J., et al.
(2011). Characterization of the brain injury, neurobehavioral profiles, and
histopathology in a rat model of cerebellar hemorrhage. Exp. Neurol. 227,
96–103. doi: 10.1016/j.expneurol.2010.09.017

Magnus, T., Röther, J., Simova, O., Meier-Cillien, M., Repenthin, J., Möller, F.,
et al. (2012). The neurological syndrome in adults during the 2011 northern
German E. coli serotype O104:H4 outbreak. Brain 135, 1850–1859. doi:
10.1093/brain/aws090

Meisen, I., Rosenbrück, R., Galla, H. J., Hüwel, S., Kouzel, I. U., Mormann, M.,
et al. (2013). Expression of Shiga toxin 2e glycosphingolipid receptors
of primary porcine brain endotelial. cells and toxin-mediated breakdown
of the blood-brain barrier. Glycobiology 23, 745–759. doi: 10.1093/glycob/
cwt013

Mewasingh, L. D., Kadhim, H., Christophe, C., Christiaens, F. J., and Dan, B.
(2003). Nonsurgical Cerebellar Mutism (Anarthria) in TwoChildren. Pediatr.
Neurol. 2003, 59–63. doi: 10.1016/S0887-8994(02)00503-9

Mizuguchi, M., Tanaka, S., Fujii, I., Tanizawa, H., Suzuki, Y., Igarashi, T., et al.
(1996). Neuronal and vascular pathology produced by verocytotoxin 2 in the
rabbit central nervous system. Acta Neuropathol. (Berl.) 91, 254–262. doi:
10.1007/s004010050423

Noris, M., and Remuzzi, G. (2005). Hemolytic uremic syndrome. J. Am. Soc.
Nephrol. 16, 1035–1050. doi: 10.1681/ASN.2004100861

Oakes, R. S., Siegler, R. L., McReynolds, M. A., Pysher, T., and Pavia, A. T. (2006).
Predictors of fatality in postdiarrheal hemolytic uremic syndrome. Pediatrics
117, 1656–1662. doi: 10.1542/peds.2005-0785

Obata, F., Tohyama, K., Bonev, A. D., Kolling, G. L., Keepers, T. R., Gross, L. K.,
et al. (2008). Shiga toxin 2 affects the central nervous system through receptor
globotriaosylceramide localized to neurons. J. Infect. Dis. 198, 1398–1406. doi:
10.1086/591911

O’Brien, A. D., and Kaper, J. B. (1998). “Shiga toxin-producing Escherichia coli:
yesterday, today, and tomorrow,” in Escherichia coli O157:H7 and Other Shiga
Toxin-Producing E. coli Strains, eds J. B. Kaper and A. D. O’Brien (Washington,
DC: ASM Press), 1–11.

Pinto, A., Jacobsen, M., Geoghegan, P. A., Cangelosi, A., Cejudo, M. L.,
Tironi-Farinati, C., et al. (2013). Dexamethasone rescues neurovascular unit
integrity from cell damage caused by systemic administration of shiga toxin
2 and lipopolysaccharide in mice motor cortex. PLoS ONE 8:e70020. doi:
10.1371/journal.pone.0070020

Plunkett, G. III, Rose, D. J., Durfee, T. J., and Blattner, F. R. (1999). Sequence of
Shiga toxin 2 phage 933W from Escherichia coliO157:H7: Shiga toxin as a phage
late-gene product. J. Bacteriol. 181, 1767–1778.

Priestley, J. V., Alvarez, F. J., and Averill, S. (1992). “Pre-embedding
electron microscopic immunocytochemistry,” in Electron Microscopic
Immunocytochemistry, eds J. M. Polak and J. V. Priestley (Oxford: Oxford
University Press), 89–121.

Proulx, F., Seidman, E. G., and Karpman, D. (2001). Pathogenesis of Shiga toxin-
associated hemolytic uremic syndrome. Pediatr. Res. 50, 63–171.

Repetto, H. A. (2005). Long-term course and mechanisms of progression of renal
disease in hemolytic uremic syndrome. Kidney Int. 68(Suppl. 97), S102–S106.
doi: 10.1111/j.1523-1755.2005.09717.x

Rivas, M., Padola, N. L., Luchessi, P. M., and Masana, M. (2010). “Diarrheogenic
Escherichia coli in Argentina,” in Pathogenic Escherichia coli in Latin America,
ed. A. G. Torres (Oak Park IL: Bentham Science Publishers Ltd.), 142–161.

Sato, J., Sasaki, S., Yamada, N., and Tsuchitani, M. (2012). Hereditary cerebellar
degenerative disease (cerebellar cortical abiotrophy) in rabbits. Vet Pathol. 49,
621–628. doi: 10.1177/0300985811402840

Sobaniec-Lotowska, M. E. (2001). Ultrastructure of Purkinje cell perikarya
and their dendritic processes in the rat cerebellar cortex in experimental
encephalopathy induced by chronic application of valproate. Int. J. Exp. Pathol.
82, 337–348. doi: 10.1046/j.1365-2613.2001.00206.x

Steinborn, M., Leiz, S., Rüdisser, K., Griebel, M., Harder, T., and Hahn, H. (2004).
CT and MRI in haemolytic uraemic syndrome with central nervous system
involvement: distribution of lesions and prognostic value of imaging findings.
Pediatr. Radiol. 34, 805–810. doi: 10.1007/s00247-004-1289-2

Tapper, D., Tarr, P., Avner, E., Brandt, J., and Waldhausen, J. (1995).
Lessons learned in the management of hemolytic uremic syndrome
in children. J. Pediatr. Surg. 30, 158–163. doi: 10.1016/0022-3468(95)
90554-5

Tironi-Farinati, C., Geoghegan, P. A., Cangelosi, A., Pinto, A., Loidl, C. F., and
Goldstein, J. (2013). A translational murine model of sub-lethal intoxication
with Shiga toxin 2 reveals novel ultrastructural findings in the brain striatum.
PLoS ONE 8:e55812. doi: 10.1371/journal.pone.0055812

Trachtman, H., Austin, C., Lewinski, M., and Stahl, R. A. (2012). Renal and
neurological involvement in typical Shiga toxin-associated HUS. Nat. Rev.
Nephrol. 8, 658–669. doi: 10.1038/nrneph.2012.196

Weissenborn, K., Donnerstag, F., Kielstein, J. T., Heeren, M., Worthmann, H.,
Hecker, H., et al. (2012). Neurologic manifestations of E. coli infection–
induced hemolytic-uremic syndrome in adults. Neurology 79, 1466–1473. doi:
10.1212/WNL.0b013e31826d5f26

Wells, J. E. A., Hurlbert, R. J., Michael, G., Fehlings, M. G., and Yong,
V. W. (2003). Neuroprotection by minocycline facilitates significant recovery
from spinal cord injury in mice. Brain 126, 1628–1637. doi: 10.1093/brain/
awg178

Yu, M. C., Young, P. A., and Yu, W. H. (1971). Ultrastructural changes in
chick cerebellum induced by polyinosinic polycytidylic acid. Am. J. Pathol. 64,
305–320.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 D’Alessio, Pinto, Cangelosi, Geoghegan, Tironi-Farinati, Brener
and Goldstein. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 7 February 2016 | Volume 7 | Article 133

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Sub-Lethal Dose of Shiga Toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cytoarchitecture
	Introduction
	Materials And Methods
	Sub-Lethal Dose
	Animals
	BBB Permeability Test
	Inclined Plane Test
	Transmission Electron Microscopy
	Statistical Analysis

	Results
	BBB Permeability of Cerebellum was Increased by Stx2
	Cerebellar Functionality was Altered by Stx2
	Stx2 Caused Profound Ultrastructural Alterations in Purkinje Cells and Granular Layers

	Discussion
	Author Contributions
	Funding
	Acknowledgment
	References


