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Abstract

Background

Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic

process starting during the acute phase of parasite infection. Among different factors, the

specific recognition of glycan structures by glycan-binding proteins from the parasite or from

the mammalian host cells may play a critical role in the evolution of the infection.

Methodology and Principal Findings

Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding

protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi
infection, particularly in the context of cardiac pathology. We found that exposure of HL–1

cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains,
Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylser-

ine and early events in the apoptotic program by parasite infection on HL–1 cells. These

effects were not mediated by direct interaction with the parasite surface, suggesting that

Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infec-
tion altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to

the cell surface. Consistent with these data, Gal–1 deficient (Lgals1-/-) mice showed

increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues,

and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal

infection with T. cruzi Tulahuén strain.
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Conclusion/Significance

Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the

relevance of galectins and their ligands as regulators of host-parasite interactions.

Author Summary

Galectins are a family of endogenous lectins defined by a well-conserved carbohydrate rec-
ognition domain (CRD) that recognizes β-galactoside-related glycans presented by several
glycoconjugates. Up to now, fifteen galectins have been identified in a variety of cells and
tissues and proposed to be crucial in diverse biological processes. Galectin–1 (Gal–1), a
prototype member of the galectin family, plays key roles in pathogen recognition and in
the modulation of innate and adaptive host immune responses. Following infection with
the intracellular parasite Trypanosoma cruzi, the etiological agent of Chagas disease, Gal–1
was found to be up-regulated in cardiac tissue from patients with chronic Chagas cardio-
myopathy. In the present study, we identified a protective role of Gal–1 in T. cruzi infec-
tion of cardiac cells, highlighting the ability of this parasite to control the glycophenotype
of these cells. Our data also disclose the relevance of parasite strain-dependent differences
in Gal-1-mediated control of T. cruzi infection in vivo. The findings presented here will
contribute to delineate the role of Gal-1-glycan interactions during T. cruzi infection, par-
ticularly in the context of heart tissue injury, with critical implications in Chagas disease.

Introduction
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, represents
the main cause of infectious heart disease in Latin America. It is estimated that about 8 to 10
million people worldwide are infected with T. cruzi, mostly in Central and South America
where Chagas disease is endemic [1,2]. In the last decade, an increased number of cases has
been well documented in North America, Europe andWestern Pacific, mostly because of the
influx of immigrants from endemic countries [3–5].

In humans, the acute phase usually occurs with mild signs and symptoms that are not
unique to this disease. However, being the cardiac muscle one of the most heavily parasitized
tissues, myocarditis characterized by pericarditis, ventricular enlargement, conduction abnor-
malities and congestive heart failure is consistently observed in acutely infected patients, with
an estimated mortality rate of 0.25 to 0.5%, often in children [6,7]. Myocarditis is found during
symptomatic acute parasite infection, but also by histopathological examination of heart biop-
sies in patients with no apparent signs of cardiac disease [8]. In fact, following acute infection,
patients enter an asymptomatic phase, which lasts throughout life in the majority of infected
subjects. The remaining 30–40% of chronically infected individuals develop cardiac or digestive
disorders (megaoesophagus and megacolon), or both, during their lifetime [6]. The cardiac
form is the most common and severe manifestation of Chagas disease, causing congestive heart
failure, arrhythmias and conduction abnormalities, which often results in sudden death [9–11].

The mechanisms linking the acute and chronic myocardial progression have not yet been
clarified. Currently, it is well accepted that the etiology of chagasic cardiomyopathy is multifac-
torial, suggesting multiple complex interactions between the host and the parasite [12,13]. Sev-
eral studies revealed that the development of cardiac symptoms is associated with T. cruzi
persistence and its genetic variability, and these effects are controlled by the host immune
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response, which involves activated T and B lymphocytes, myeloid cells, pro-inflammatory cyto-
kines, cross-reactive antibodies and endogenous lectins [14–17].

Galectin–1, a proto-type member of the galectin family, has the ability to recognize N-acet-
yllactosamine (LacNAc) residues present in N- and O-glycans [18,19]. This lectin plays differ-
ent roles governed not only by its relative concentrations but also by its subcellular
compartmentalization [19]. While intracellular Gal–1 controls signaling pathways via protein-
protein or protein-glycan interactions, extracellular Gal–1 plays key roles in cell aggregation,
cell adhesion to the extracellular matrix and regulation of cell survival, inflammation, immu-
nity and angiogenesis [20–25]. Recently, Seropian and colleagues demonstrated that Gal–1
expression is up-regulated in cardiac cells exposed to hypoxic microenvironments or proin-
flammatory cytokines, as well as in peri-infarcted area of the mouse heart after experimental
acute myocardial infarction (AMI) and in human cardiac tissue from patients with end-stage
chronic failure [26]. Furthermore, hearts from mice lacking the Gal–1 gene (Lgals1-/-) which
underwent experimental AMI, showed a higher number of inflammatory cells together with a
lower number of regulatory T (Treg) cells compared with their wild-type (WT) counterpart.
Overall, these findings suggest a potential role of Gal–1 in controlling the inflammatory
response in cardiac tissue exposed to internal or external insults [26].

With regards to T. cruzi infection, Gal–1 has been found to be up-regulated in cardiac tissue
from patients with severe chronic Chagas cardiomyopathy. Moreover, an increase frequency of
anti-Gal–1 autoantibodies was found to be associated with the severity of cardiac damage during
the course of the disease [27]. Whereas low concentrations of Gal–1 increased the number of
trypomastigotes (Tulahuén strain) in infected macrophages by diminishing IL–12 production,
high concentrations of this lectin promoted macrophages apoptosis and inhibited parasite repli-
cation [28]. However, the role of Gal–1 during T. cruzi infection of cardiac cells has not been yet
elucidated. Here we undertook this study to investigate the expression and function of Gal–1 in
the adult murine cardiac cell line HL–1 infected with two different phylogenetic discrete typing
units (DTUs) of T. cruzi, namely the Brazil and Tulahuén strains, belonging to TcI and TcVI
DTUs, respectively. In addition, we analyzed the impact of endogenous Gal–1 during the course
of experimental T. cruzi infection using the above mentioned T. cruzi strains, focusing on para-
sitemia, survival rates and heart alterations. Our findings identify a protective role of Gal–1 on
T. cruzi infection of cardiac cells and demonstrate how parasite infection reprograms expression
of cell surface glycans, shifting the balance toward a Gal-1-non-permissive glycophenotype.

Methods

Ethics statement
Clinical research protocols followed the tenets of the Declaration of Helsinki. The protocols
used in this study were approved by the Medical Ethics Committee of Fernandez Hospital
(Buenos Aires, Argentina). All patients gave written informed consent before blood collection
and after the nature of the study were explained.

Animal studies were conducted in accordance with the Guide for the Care and Use of Labora-
tory Animals, 8th Edition (2011). The protocols used were approved by Animal Care Committee
of the Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional
de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán” (Buenos Aires, Argentina).

Study population
Patient selection was conducted at the Cardiovascular Division of Fernandez Hospital. Positive
serology for Chagas disease was determined by two or more tests (indirect immunofluores-
cence, enzyme-linked immunosorbent assay [ELISA], indirect hemagglutination, or
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complement fixation) and those patients who had at least two of three reactive serological tests
were considered T. cruzi infected. Patients underwent a complete clinical and cardiologic
examination that included medical history, physical examination, electrocardiogram (ECG) at
rest, laboratory and chest X-ray examinations, and Doppler echocardiography evolution. The
exclusion criteria considered the presence of systemic arterial hypertension, diabetes mellitus,
thyroid dysfunction, renal insufficiency, chronic obstructive pulmonary disease, hydroelectro-
lytic disorders, alcoholism, history suggesting coronary artery obstruction and rheumatic dis-
ease, and the impossibility of undergoing clinical examination.

The study population consisted of 28 patients who completed the screening protocol and
were in the chronic phase of the infection, 19 patients with cardiac symptoms and 9 patients in
the asymptomatic phase. Forty-two non-infected individuals, within the same age range (30–
70 years old) which showed negative serological tests for Chagas disease, were included as con-
trol group.

Production of recombinant Gal–1
Recombinant Gal–1 (rGal–1) was produced and purified essentially as described previously
[23,29]. LPS content of the purified samples (<60 ng/mg) was tested using a gel-clot Limulus
test (Associates of Cape Cod, Falmouth, MA).

Parasites
Trypomastigotes of the Brazil and Tulahuén (stock Tul–2) strains [30,31] were obtained from
the extracellular medium of infected monolayers of Vero cells. After separation of Vero cells
and cellular debris by centrifugation at 500 x g for 5 min, trypomastigotes were collected by
centrifugation at 2,200 x g for 10 min and resuspended in RPMI medium containing 10% FCS.
Parasites were counted using a Neubauer chamber and used for in vitro infection experiments
as described below.

Bloodstream trypomastigotes of both strains were maintained in vivo by serial passages of
blood-form trypomastigotes in BALB/c mice.

Cell cultures and transfection
HL–1, an immortalized adult murine cardiac cell line, was plated onto gelatin/fibronectin pre-
coated vessels and cultured in Claycomb medium (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% FCS, 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM L-glutamine as
previously described [32], under water jacketed incubator at 37°C, 5% CO2.

pcDNA3-Gal–1 expression vector was cloned as previously described [33]. Briefly, HL–1
cells were transiently transfected in a 24-well tissue plate with pcDNA3-Gal–1 plasmid or
empty vector (0.45 μg DNA/well) using the Lipofectamine 2000 reagent (Invitrogen Co., Carls-
bad, USA), according to the manufacturer’s instructions. Cells were selected for resistance to
Geneticine (Life Technologies, Foster City, CA). Transfection efficiency was tested by deter-
mining Gal–1 concentration in the supernatants of HL–1 cells by ELISA.

T. cruzi trypomastigote invasion assay
HL–1 cells seeded on 12 mm cover-slips in 24-well tissue plates (2 x 104 cells/well), were incu-
bated with rGal–1 (10 or 50 μg/ml) for 24 h, in the presence or absence of 100 mM lactose.
Then, cardiac cells were infected with trypomastigotes of the Brazil or Tulahuén strains using
two different protocols: a) cells were infected with a parasite-to-host cell ratio of 5:1 for 18 h;
unattached parasites were then removed by washing with PBS and cells were kept in culture
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with fresh medium for additional 30 h or, b) cells were infected with a parasite-to-host cell
ratio of 10:1 for 4 h; unattached parasites were removed by washing with PBS and cells were
kept in culture with fresh medium for 4 days.

In experiments with pcDNA3-Gal-1-transfected HL–1 cells, we directly infected the cells
with trypomastigotes according to protocol a). Of note, no differences were found in the per-
centage of infected cells between wild-type HL–1 cells and those transfected with the plasmid
alone (mock) (S1 Fig).

At the indicated time, cells were washed with PBS, fixed in 2% (w/v) paraformaldehyde/PBS
overnight, rinsed and kept for 5 min in 0.02 M glycine/ PBS pH 7.4 to quench reactive groups
of the fixative. Each manipulation was preceded by washing the cells three times in PBS. After
cell permeabilization with PBS-Triton X–100 1% for 5 min and blocking with PBS-BSA 2%,
intracellular parasite were identified by indirect immunofluorescence with sera from T. cruzi
infected mice (dilution 1:1,000) as primary antibody (Ab) and Alexa Fluor 488 conjugated goat
anti-mouse IgG (Life Technologies, Foster City, CA) as secondary Ab. Dishes were mounted in
Vectashield medium (Vector Labs, UK) containing DAPI and visualized using a fluorescence
microscope at a magnification of 200X. Images were acquired using an Olympus DP71 digital
camera. The number of cells was determined by using Cell Profiler software (version 2). The
percentage of infected cells was determined by counting an average of 3,500 cells in each slide
on 3–5 distinct coverslips in randomly selected fields; each sample was tested in three to five
replicates, in at least two independent experiments. A cell was considered infected when con-
tained at least one intracellular amastigote.

Infection in vivo
Age- and gender-matched mice with genetic deletion of the gene encoding Gal–1 (Lgals1-/-)
and WT mice with equivalent genetic background (C57BL/6) were kindly provided by Dr.
Francoise Poirier (Jacques Monod Institute, Paris, France). Eight-week-old mice were inocu-
lated intraperitoneally with 2,500 bloodstream trypomastigotes of the Brazil or Tulahuén
strains resuspended in 200 μl RPMI media. Non-infected Lgals1-/- andWT mice (n = 5–15)
injected only with RPMI media were used as controls. Parasitemia was determined twice a
week from the second to the fifth week of infection by counting parasites in a 5 μl drop of tail
vein blood. Results were expressed as the number of trypomastigotes per ml of blood. Survival
was recorded daily until 95 dpi.

For histopathological studies, infected and control mice were lightly anesthetized with Aver-
tin (tribromoethanol) before sacrifice by cervical dislocation at 120 and 19 dpi with Brazil and
Tulahuén strains, respectively. Hearts and skeletal muscle samples were harvested, fixed in
10% neutral buffered formalin, processed routinely and embedded in paraffin. Five micron
thickness sections were stained with hematoxylin and eosin (H&E) and examined at an Olym-
pus DP71 light microscope. The number of parasitized cells per section and the extent of
inflammation were recorded on a single blind basis as described previously [34,35]. Briefly, dif-
ferent areas of the heart (atria, ventricular walls and septum) and skeletal muscle sections were
evaluated qualitatively and scored according to the distribution (focal, confluent or diffuse)
and the extent of inflammation as follows: normal (0); focal or a single inflammatory foci (1);
multifocal, non-confluent inflammatory infiltrates (2); confluent inflammation with partial
section involvement (3); diffuse inflammation extended through the section (4).

Annexin V staining
HL–1 cells (1 x 104 cells/well) seeded in a 48-well tissue plate were cultured in the presence of
rGal–1 (10 or 50 μg/ml) for 18 h and then infected with 5 x 104 trypomastigotes of the Brazil or
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Tulahuén strains. After 18 h, cells were washed to remove unattached parasites and incubated
for 48 h. Samples were finally processed for phophatidylserine exposure by using the FITC-An-
nexin V Apoptosis Detection Kit (BD Pharmingen, Chicago, IL, USA) according to the manu-
facturer’s instructions. Cells fixed with 2% (w/v) paraformaldehyde/PBS, were acquired using a
FACSAria flow cytometer. Data were analyzed with WinMdi software.

Gal–1 binding to T. cruzi
Fluorescence staining. Two hundred μl of RPMI media containing 2.5 x 105 trypomasti-

gotes of the Brazil or Tulahuén strains, were added to round 12 mm coverslips previously
treated with poly-L-lysine 10 mM for 30 min, washed with distilled water and air-dried. After
30 min, parasites were fixed in 2% (w/v) paraformaldehyde/PBS overnight at 4°C. Residual
formaldehyde was quenched by addition of 0.02 M glycine in PBS pH 7.4. Each manipulation
was preceded by washing the parasites three times in PBS. After blocking in PBS-BSA 2%, para-
sites were treated with rGal–1 (25 μg/ml) for 1 h, followed by incubation with anti-mouse Gal–
1 Ab labeled with Alexa Fluor 488 (dilution 1:200 in PBS-BSA 1%). As control, parasites were
incubated with a rabbit anti-Tc13 polyclonal Ab (dilution 1:500) for 90 min at room tempera-
ture and then, revealed with anti-rabbit IgG Cy3 Ab (dilution 1:200 in PBS-BSA 1%) (Sigma-
Aldrich, St.Louis, MO, USA). Dishes were mounted in Vectashield medium (Vector Labs, UK)
containing DAPI and visualized using an Olympus BX41 fluorescence microscope at a magnifi-
cation of 200X. Images were acquired using an Olympus DP71 digital camera.

Flow cytometry. Approximately 2.5 x 105 trypomastigotes of the Brazil or Tulahuén
strains, were harvested from infected Vero cells, washed twice with 0.5 ml of cold PBS-BSA 1%.
After washing three times in 10 mMHEPES, 150 mMNaCl pH 7.4 containing 1% BSA (lectin
buffer-BSA 1%), trypomastigotes were incubated with FITC-labeled Gal–1 (25 μg/ml in lectin
buffer-BSA 1%). As control, parasites were simultaneously incubated with a rabbit anti-Tc13
polyclonal Ab (dilution 1:1,000) and then revealed with anti-rabbit Ab conjugated with APC
(dilution 1:200 in lectin buffer-BSA 1%) (BD Pharmingen, Chicago, IL, USA) for 1 h at room
temperature. After washing, parasites were fixed with 2% (w/v) paraformaldehyde/PBS and a
minimum of 10,000 events were acquired on a FACSAria flow cytometer (Becton Dickinson).
Non-specific binding was determined with streptavidin-FITC only. Data analyses were carried
out with WinMdi software.

Glycophenotype and Gal–1 binding assays
T. cruzi-infected and non-infected HL–1 cells were harvested at 5 dpi and counted in a Neu-
bauer chamber. Approximately 1 x 105 cells were washed twice with 0.5 ml of cold PBS-BSA
1% and resuspended in lectin buffer-BSA 1%, containing the following biotin-conjugated lec-
tins: PNA, SNA, HPA, LEL, PHA-L, MAL II (S2 Fig and S1 Table) at the appropriate concen-
tration for 1 h at room temperature, and then incubated with FITC conjugated streptavidin
(BD Pharmingen, Chicago, IL, USA) in lectin buffer-BSA 1%. After 30 min at room tempera-
ture, cells were fixed with 2% (w/v) paraformaldehyde/PBS and a minimum of 10,000 events
were acquired on a FACSAria flow cytometer. Non-specific binding was determined with
FITC conjugated streptavidin alone. Data analyses were carried out with WinMdi software.
Results were expressed as the percentage of positive cells or as the relative specific fluorescence
index (SFI) for each lectin. The relative SFI was expressed by the ratio of the SFI of infected
cells samples to that of non-infected cells samples; SFI was calculated by dividing mean fluores-
cence recorded with the specific biotinylated lectin and FITC-streptavidin by the fluorescence
intensity obtained with FITC-streptavidin only. Similar procedure was performed to determine
Gal–1 binding to HL–1 infected cells and non-infected cells. In this case, cells were incubated
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with rGal–1 at three different concentrations (5, 10 and 50 μg/ml) in the absence or presence of
lactose (100 mM) and further revealed using a FITC-labeled anti-mouse Gal–1 Ab (dilution
1:200 in lectin buffer-BSA 1%).

To confirm the glycophenotype, paraformaldehyde-fixed infected and non-infected cells
seeded in 12 mm cover slides were incubated with LEL and PHA-L and FITC conjugated strep-
tavidin as described above. Coverslips were visualized using a fluorescence microscope at a
magnification of 200X. Images were acquired using an Olympus DP71 digital camera.

ELISA
Soluble Gal–1 was determined using an in-house ELISA. Briefly, high binding 96-well micro-
plates (NuncMaxisorb) were coated with capture Ab (2 μg/ml purified rabbit anti-Gal–1 poly-
clonal IgG) in 0.1 M sodium carbonate pH 9.5. After incubation for 18 h at 4°C, wells were
rinsed three times with wash buffer (0.05% Tween–20 in PBS) and incubated for 1 h with block-
ing solution (2% BSA in PBS). Samples and standards (100 μl) were diluted in PBS-BSA 1% and
incubated for 18 h at 4°C. Plates were then washed and incubated with 100 ng/ml biotinylated
detection Ab (purified rabbit anti-Gal–1 polyclonal IgG) for 1 h. Plates were rinsed three times
before adding horseradish peroxidase-labeled streptavidin (0.33 μg/ml; Sigma-Aldrich,
St. Louis, MO, USA) for 30 min at room temperature. After washing, 100 μl of TMB solution
(0.1 mg/ml tetramethylbenzidine and 0.06% H2O2 in citrate-phosphate buffer pH 5.0) was
added to the plates. The reaction was stopped by adding 2N HCl and Optical density (OD) was
determined at 450 nm in a Versamax microplate reader (Molecular Devices). All samples were
tested in duplicate, in two independent experiments. A standard curve ranging from 2.5 to 320
ng/ml of rGal–1 was run in parallel. Results are expressed as means of duplicates, in ng/ml.

Immunoblot analysis
Infected and non-infected HL–1 cells were washed with PBS, harvested and homogenized in
ice-cold lysis buffer (10 mMHEPES, 2 mM EDTA, 150 mMNaCl 150, 0.1% NP40) in the pres-
ence of a protease inhibitor kit (Complete Mini EDTA-free, Roche, Germany). After protein
quantification by Bradford reagent (Sigma-Aldrich, St. Louis, MO, USA), equal amount of pro-
tein (60 μg per lane) was resolved on a 15% SDS-PAGE, transferred to nitrocellulose mem-
branes and then immunoblotted with a rabbit anti-Gal–1 polyclonal Ab (dilution 1:3,000) or a
mouse monoclonal Ab for β-actin (BD Pharmingen, Chicago, IL, USA) as a loading control.
Blots were then incubated with horseradish peroxidase-conjugated anti-rabbit IgG (Vector
Labs, UK) or horseradish peroxidase-conjugated anti-mouse IgG (Sigma-Aldrich, St. Louis,
MO, USA). Immunoblots were visualized with the Immobilon chemiluminescent horseradish
peroxidase substrate (Millipore, Billerica, MA) according to manufacturer’s instructions. The
bands were scanned and quantified using ImageJ software (version 1.410).

RT-qPCR
Total RNA was extracted using Trizol reagent (Gibco/BRL, Grand Island, USA). Reverse tran-
scription was performed using oligodT and Superscript Reverse II transcriptase (Life Technol-
ogies, Foster City, CA), according to the manufacturer’s instructions. Real time RT-PCR was
done in Rotor-Gene 6000 (Corbett, UK) device using SYBR Green PCR master mix (Life Tech-
nologies, Foster City, CA). Data were analyzed using the relative standard curve method and
results were normalized with respect to glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
mRNA levels.

The following primers were used: mouse Gal–1, forward 50-TGAACCTGGGAAAAGAC
AGC–30 and reverse 50-TCAGCCTGGTCAAAGGTGAT–30; mouse GAPDH forward 50-
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ACTCCCACTCTTCCACCT -30 and reverse 50- TCCACCACCCTGTTGCT -30. Expression
was calculated from the standard curves and then expressed in arbitrary units of Gal–1 relative
to GAPDH.

Statistical analyses
Unless otherwise indicated, values are expressed as means ± SEM of at least three independent
experiments. Statistical comparisons were performed with one-way ANOVA followed by
Tukey test for multiple-group comparisons, except for glycophenotype analysis where Dun-
nett’s test was used to compare every mean with the control mean. For Gal–1 expression deter-
mined by Western-blot, Student’s t test was used. Concentration of Gal–1 measured by ELISA
was evaluated by using non-parametric Kruskal-Wallis test followed by Dunn’s multiple com-
parison test, while parasitemia and histological findings were analyzed by using the Mann
Whitney U test. Log-rank test was performed for statistical comparison of animal survival
curves. All tests were performed using GraphPad Prism (GraphPad Software Inc., CA, USA).
p<0.05 was considered statistically significant.

Results

Elevated Gal–1 levels in sera from asymptomatic and symptomatic
patients with chronic Chagas Disease
Because Gal–1 expression was higher in heart tissue from patients with chronic Chagas cardio-
myopathy who underwent cardiac transplantation [26], we first examined Gal–1 levels in sera
from patients during the chronic phase of disease. Results showed that Gal–1 was increased in
sera from chronic chagasic patients compared with non-infected subjects (Fig 1). However, no
difference was observed between Gal–1 levels in sera from cardiac patients compared with
those from asymptomatic individuals. Thus, elevated Gal–1 levels delineate chronic Chagas
Disease irrespective of cardiac pathology.

T. cruzi infection augments Gal–1 release, but not Gal–1 expression in
HL–1 cardiac cells
Given the higher levels of Gal–1 in sera and cardiac tissue in response to T. cruzi infection, we
analyzed the expression of this lectin in infected and non-infected cardiac cells. We infected
the murine cardiac cell line HL–1 with trypomastigotes belonging to two different DTUs, Tula-
huén (TcVI) or Brazil (TcI) strains. The presence of Gal–1 was assessed after 2 and 5 days post
infection (dpi) at the protein and mRNA levels. HL–1 cells infected with T. cruzi Tulahuén
strain did not show any difference in the expression of either Gal–1 mRNA or protein com-
pared with non-infected cells at both times analyzed (Fig 2A and 2B). On the contrary, cells
infected with T. cruzi Brazil strain showed a slight reduction in Gal–1 protein levels only after 2
dpi while no significant differences were achieved at mRNA level at any of the times tested (Fig
2A and 2B). However, when we analyzed the secretion of Gal–1, we found increased amount of
this lectin in supernatants of HL–1 cells infected with T. cruzi (Tulahuén and Brazil strains) at
day 5 post-infection (Fig 2C). To evaluate whether enhanced Gal–1 secretion correlated with
cellular lysis, we assessed the release of the cytoplasmatic enzyme lactate dehydrogenase (LDH)
into the culture media of infected HL–1 cells. Results showed that LDH activity was consider-
ably greater in supernatants of infected HL–1 cells after 5 dpi using trypomastigotes of both
strains (Fig 2D). These data showed an association between Gal–1 and LDH release, suggesting
that increased lysis of cardiac cells might contribute to greater Gal–1 secretion.
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Gal–1 mitigates T. cruzi infection of HL–1 cardiac cells
To investigate the impact of Gal–1 on T. cruzi infectivity of cardiac cells, HL–1 cells were incu-
bated with different concentrations of recombinant Gal–1 (rGal–1) during 24 h and then
infected with trypomastigotes of both strains, Tulahuén and Brazil. Of note, we used rGal–1
doses which did not affect cell viability as evaluated by annexin V-FITC staining (S3 Fig). After
4 dpi with trypomastigotes of the Tulahuén strain, the percentage of infected cells significantly
diminished in the presence of increasing concentration of rGal–1 (Fig 3A and 3B). Similar
results were obtained when HL–1 cells were infected with the Brazil strain, although a non-sig-
nificant trend toward a decrease in T. cruzi infectivity was observed at 10 μg/ml of rGal–1 (Fig
3D and 3E). These data indicate that rGal–1 alters the infection of cardiac cells by T. cruzi,
independently of the parasite lineage (TcI or TcVI). Because at 4 dpi, the percentage of infected
cells could be affected by multiple rounds of infection with T. cruzi, we evaluated the effect of
rGal–1 at early time periods of the infection cycle. After 2 dpi, rGal–1 at 50 μg/ml diminished
infection of cardiac cells by both T. cruzi lineages; this effect was prevented in the presence of
lactose (Fig 3C and 3F), suggesting that the carbohydrate recognition domain (CRD) of Gal–1
may be involved in Gal–1 modulation of parasite infection. Similar results were observed when
Gal–1 transfected HL–1 cells were infected with both T. cruzi strains (Fig 3G), indicating that
both exogenous and endogenous Gal–1 control parasite infectivity.

To further analyze the mechanistic bases of this effect, we evaluated whether rGal–1 binds
to trypomastigote forms of T. cruzi, either from Tulahuén or from Brazil strain. Notably, no
specific binding of rGal–1 was observed with any of the parasite strains (Fig 4), either by

Fig 1. Gal–1 concentration in sera from patients with chronic Chagas disease and non-infected
individuals. Serum Gal–1 levels were determined by ELISA, as indicated in the Methods section. Statistical
analysis was performed using Kruskal-Wallis test followed by Dunn’s multiple comparison test. **p<0.01;
***p<0.001.

doi:10.1371/journal.pntd.0004148.g001
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Fig 2. Expression and release of Gal–1 in cultures of HL–1 cells infected with T. cruzi. Cells were infected with trypomastigotes of Tulahuén or Brazil
strains, in a parasite:cell ratio of 5:1, and incubated for additional 2 or 5 days. A) Immunoblot analysis of Gal–1 expression in lysates from non-infected (a)
and infected (b) HL–1 cells. Immunoreactive protein bands were semiquantified by densitometry. Results are expressed as Arbitrary Units (AU) relative to β-
actin. B) RT-qPCR analysis of Gal–1 mRNA expression of non-infected and infected HL–1 cells. Results are expressed as relative to GAPDHmRNA. C)
Detection of Gal–1 in the supernatant of non-infected and infected HL–1 using trypomastigotes of the Tulahuén and Brazil strains, as measured by ELISA. D)
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fluorescence staining or by flow cytometry, suggesting that direct binding of Gal–1 to the para-
site does not account for the regulatory effects of this lectin.

Gal–1 prevents T. cruzi induced phosphatidylserine exposure, an early
apoptotic event in HL–1 cells
The ability of T. cruzi trypomastigotes to control apoptotic programs in cardiac cells [36,37]
and the ability of Gal–1 to regulate viability of different cell types [18], prompted us to investi-
gate the effect of this lectin in parasite induced phosphatidylserine (PS) exposure, an early apo-
ptotic event, on plasma membrane of HL–1 cardiac cells. Thus, we pre-incubated HL–1 cells
with rGal–1 (10 and 50 μg/ml) and, following infection with trypomastigotes of the Tulahuén
or Brazil strain, annexin V staining was performed. While trypomastigotes of both strains
induced considerably exposure of phosphatidylserine residues in HL–1 cardiac cells, the per-
centage of annexin V-positive cells significantly diminished when cells were pre-incubated
with 50 μg/ml rGal–1 before parasite infection (Fig 5). These data suggest that Gal–1, not only
reduces T. cruzi infectivity, but also protects cardiac cells from T. cruzi driven-phosphatidylser-
ine exposure.

T. cruzi induces a Gal–1 resistant glycophenotype in HL–1 cardiac cells
To test if T. cruzi infection induces changes in the glycophenotype of cardiac cells, we analyzed
binding of a panel of biotinylated lectins that recognize specific glycan structures (S2 Fig and
S1 Table) to HL–1 cells. Infection with trypomastigotes of the Tulahuén strain led to reduced
binding of Lycopersicon Esculentum agglutinin (LEL), a lectin that recognizes poly-LacNAc-
enriched glycans and phytohemagglutinin-L (PHA-L), a lectin that binds to β1,6-N-acetylglu-
cosamine-branched complex N-glycans (Fig 6A). Analysis by fluorescence microscopy con-
firmed these findings (Fig 6C), indicating that poly-LacNAc and complex branched N-glycans,
which are key saccharide ligands required for Gal–1 binding, are hindered in response to T.
cruzi infection. Next, we analyzed reactivity for Sambucus nigra agglutinin (SNA), a lectin that
recognizes α2,6-linked sialic acid. Results showed that the number of SNA+ HL–1 cells was sig-
nificantly higher after infection with trypomastigotes of the Tulahuén strain compared to non-
infected cells (Fig 6B).

Gal–1 preferentially recognizes poly-LacNAc units present on the branches of N- and O-gly-
cans, but does not bind to α2,6-sialylated LacNAc residues [18]. Hence, we hypothesized that
increased α2,6-linked sialic acid together with reduced poly-LacNAc and β1,6-branched N-gly-
cans may limit Gal–1 binding to the surface of infected cardiac cells. To address this question,
we analyzed binding of rGal–1 to HL–1 cells infected with T. cruzi Tulahuén strain, in the
absence or presence of the galectin-specific disaccharide lactose. Consistent with the surface
glycophenotype of these cells, we detected lower binding of Gal–1 to infected versus non-
infected cardiac cells; an effect which was dose- and saccharide-dependent (Fig 6D). However,
infection of HL–1 cells with trypomastigotes of the Brazil strain led only to reduction of
PHA-L reactive complex N-glycans, although no changes were detected in the percentage of
cells exposing α2-6-linked sialic acid on N-glycans (Fig 6A, 6B and 6C). Thus, infection with T.
cruzi Tulahuén strain selectively controls the glycosylation signature of cardiac cells. This

Detection of LDH activity in the supernatants of non-infected and infected HL–1 cells by using the LDH-UP kit (Weiner Lab, Argentina), following the
manufacturer’s instructions. Results are expressed as Units/ml (U/ml). Data represent the mean ± SEM of three (A and B) and two (C and D) independent
experiments. Statistical analysis was performed using Student’s t test for data shown in A (a vs b) and using one-way ANOVA followed by Tukey test in the
remaining experiments. *p<0.05; ***p<0.001.

doi:10.1371/journal.pntd.0004148.g002
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Fig 3. Effect of exogenous rGal–1 in T. cruzi infection. HL–1 cells were incubated with rGal–1 (10 and 50 μg/ml) for 24 h and then infected with
trypomastigotes of both strains. After 4 dpi with T. cruzi Tulahuén (A) or Brazil strain (D), cells were fixed and stained with an anti-T. cruzimouse serum.
Representative images are shown in (B) and (E). Similar experiments were performed after 2 dpi with T. cruzi of the Tulahuén (C) or Brazil strains (F). In this
case, some wells were treated with 100 mM lactose, added simultaneously with rGal–1. G) HL–1 cells transfected with pcDNA3-Gal–1 vector or empty vector
(mock) were infected with trypomastigotes of both strains, in the presence or absence of 100 mM lactose. Cells were fixed and stained after 2 dpi, with an
anti-T. cruzimouse serum. In all cases, the percentage of infected cells was determined by counting an average of 3,500 cells in each slide on 3–5 distinct
coverslips in randomly selected fields. Results are expressed as mean ± SEM of triplicates determinations from three independent experiments. Statistical
analysis was performed using one-way ANOVA followed by Tukey test. *p<0.05; **p<0.01; ***p<0.001.

doi:10.1371/journal.pntd.0004148.g003
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strain-dependent regulatory effect may control Gal–1 binding, parasite infection and cardio-
myocyte function.

The protective role of Gal–1 on T. cruzi infection in vivo is dependent on
parasite lineage
To investigate the relevance of Gal–1 during T. cruzi infection in vivo, Lgals1-/- and WT female
and male mice were examined for parasitemia, survival and histopathology, following intraper-
itoneal inoculation of the parasite.

Although mice were challenged with the same parasite inoculum size, the course of the
infection was different according to the T. cruzi strain used. The peak of parasitemia in Tula-
huén strain-infected mice (occurring at 19–22 dpi) was higher than that recorded in mice
infected with the Brazil strain (at 26–28 dpi; p<0.05), suggesting strain-dependent differences
in the in vivo infectivity of T. cruzi trypomastigotes (Fig 7A and S4 Fig). Interestingly, Lgals1-/-

mice infected with trypomastigote of the Tulahuén strain had significantly higher parasitemias
compared to WT mice (p<0.05), regardless of the gender of the animals (Fig 7A). On the con-
trary, levels of parasitemia were slightly higher in Lgals1-/- male mice infected with the Brazil
strain compared to that of WT mice at 28 dpi, whereas no differences were found in female
mice (S4 Fig).

The percentage of female Lgals1-/- mice that survived acute infection with T. cruzi Tulahuén
strain was significantly lower (P = 0.0008; Fig 7B) and the mean survival time was shorter

Fig 4. Binding of rGal–1 to T. cruzi trypomastigotes. A) Fluorescence assay of trypomastigotes incubated
with rGal–1 (25 μg/ml) for 1 h, followed by incubation with a mouse anti-Gal–1 Ab labeled with Alexa Fluor
488. Staining with a rabbit polyclonal serum anti-Tc13, a surface protein presented in trypomastigotes, was
used as positive control. B) Representative histograms of trypomastigotes of the Tulahuén or Brazil strain
incubated with Gal-1-FITC (25 μg/ml). Red lines correspond to parasites treated with Gal-1-FITC, black lines
to parasites incubated with streptavidin-FITC used as negative control.

doi:10.1371/journal.pntd.0004148.g004

Gal-1 Impairs T. cruzi Infection

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004148 October 9, 2015 13 / 23



(P = 0.0127; S2 Table) compared to their WT counterpart. There were no differences in mortal-
ity rates and survival time between male Lgals1-/- andWT animals infected with trypomasti-
gotes of the Tulahuén strain. On the other hand, mortality rates and survival time of Lgals1-/-

mice infected with the Brazil strain were similar to that of their WT mice counterparts, regard-
less of mice gender (S4 Fig and S2 Table).

Differences in the survival rates and parasitemia in mice infected with T. cruzi Tulahuén
strain, prompted us to analyze the histopathology of heart and skeletal muscles. The density of
parasitized cells was significantly higher in the heart, but not in the skeletal muscle of Lgals1-/-

mice infected with T. cruzi Tulahuén strain at the peak of parasitemia, compared with WT
mice; this effect was independent of the gender of the mice (p<0.05; Fig 8A and 8B). However,
the inflammation score in Lgals1-/- mice was lower in the heart of females and in the skeletal
muscle of male animals, compared with their WT counterparts (Fig 8A and 8C). Because the
susceptibility or resistance to infection relies not only on the host but also on parasite genetics,
we believe that, in our hands, Brazil strain had less infectivity for C57BL/6 mice and, probably
higher inoculum of Brazil strain would recapitulate the results obtained with a more virulent T.
cruzi strain such as Tulahuén. Overall, our data indicate strain-dependent differences in Gal-
1-mediated protection of T. cruzi infection in vivo.

Discussion
The interaction between parasite and host cells is crucial for T. cruzi survival involving the rec-
ognition of a large number of ligands and/or receptors on the surface of both the parasite and
the host cells [37–41]. With regards to cardiomyocytes, carbohydrate residues of membrane
glycoconjugates, like galactosyl, mannosyl, and sialyl residues, together with mannose receptors
not only participate in parasite entry but are also regulated by the infection itself [41]. Intracel-
lularly, the parasite takes control of host cells, including cardiomyocytes which respond to
infection with the production of cytokines, chemokines, metalloproteinases, and glycan-bind-
ing proteins [41].

Fig 5. Effect of Gal–1 on phosphatidylserine exposure in T. cruzi infected HL–1 cells.Cells were incubated with rGal–1 (10 and 50 μg/ml) for 18 h and,
then infected with T. cruzi, Tulahuén (A) or Brazil (B) strains. Annexin V assay was performed at 3 dpi. Results expressed as mean ± SEM are representative
of two independent experiments. Statistical analysis was performed using one-way ANOVA followed by Tukey test. *p<0.05; **p<0.01. Only comparisons
between infected groups were shown.

doi:10.1371/journal.pntd.0004148.g005
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Fig 6. Glycophenotypic analysis of HL–1 cells infected with T. cruzi trypomastigotes. Non-infected and infected HL–1 cells at 5 dpi with T. cruzi
Tulahuén and Brazil strain, were incubated with different biotinylated lectins (see S1 Table), followed by incubation with FITC-streptavidin. After fixation, cells
were analyzed by flow cytometry (A). Results are expressed as relative SFI, calculated as SFI of infected HL–1 cells/SFI of non-infected HL–1 cells for each
lectins tested. SFI for each lectin was calculated as the ratio of the mean fluorescence of each samples stained with biotinylated lectin plus streptavidin-FITC
over the mean fluorescence of the samples incubated with streptavidin-FITC alone. Dot lines show the mean value of relative SFI of infected over non-
infected HL–1 cells incubated with streptavidin-FITC (baseline). Relative percentage of positive cells (infected/non-infected) for SNA staining is shown in B).
Results are expressed as mean ± SEM of three independent experiments. Statistical analysis was performed using one-way ANOVA followed by Dunnett´s
test. *p<0.05; **p<0.01. Glycophenotypic analysis of infected HL–1 cells was also determined by fluorescence assay. Representative images of LEL and
PHA-L staining are shown in C). Binding curve of rGal–1 to HL–1 cells infected with T. cruzi trypomastigotes of the Tulahuén strain (D). Non-infected and
infected cells at 5 dpi with T. cruzi Tulahuén strain, were incubated with different concentration of rGal–1, in the absence or presence of lactose (100 mM) and
then revealed with FITC labeled anti-mouse Gal–1 Ab. After 30 min, cells were fixed and a minimum of 10,000 events were acquired on a FACSAria flow
cytometer. Nonspecific binding was determined with FITC conjugated streptavidin alone.

doi:10.1371/journal.pntd.0004148.g006
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Galectins, a family of glycan-binding proteins, have recently emerged as novel regulators of
host-parasite interactions [42,43]. With regards to T. cruzi infection, Pineda et al. recently
showed the differential recognition by human Gal–1, -3, -4, -7 and -8 of fourteen different
strains of T. cruzi corresponding to the six lineages representing the genetic diversity of the par-
asite, suggesting strain-dependent glycosylation of the parasite surface [44]. Interestingly, Gal–
3, the best studied galectin in the context of T. cruzi infection, is recruited during parasite inva-
sion of host cells and influences intracellular trafficking of amastigotes [45]. Moreover, expres-
sion of Gal–3 in the thymus of T. cruzi infected mice has been shown to determine the
premature exit of immature T cells by modulating thymocyte-extracellular matrix interactions
[46]. This ‘chimera-type’ galectin has been found to be required for T. cruzi adhesion to
human coronary artery smooth muscle cells and for B cell function following infection with
the parasite [47–49]. In addition, mice lacking Gal–3 showed increased blood parasitemia and
impaired cytokine production during T. cruzi infection [50]. Although the role of other mem-
bers of the galectin family during T. cruzi infection still needs to be addressed, these data high-
light the multifunctional role of these lectins in host-parasite communication.

Here, we aimed at dissecting the role of Gal–1 and its specific glycans in the infection of car-
diac cells with T. cruzi trypomastigotes (lineages Tcl and TcVI). We demonstrated that Gal–1
not only reduced infection by T. cruzi but also diminished phosphatidylserine exposure, an

Fig 7. Parasitemia levels (A) and survival rate (B) of WT and Lgals1-/- mice acutely infected with T. cruzi Tulahuén strain, via the intraperitoneal
route. For parasitemia levels, each point represents the mean ± SEM of 5–15 animals per group, and statistical analysis was performed using Mann-Whitney
U test. *p<0.05, **p<0.01 vs. WT mice; $p<0.05, $$p<0.01 vs. male mice. For survival rate, statistical analysis was achieved with Log-rank test.

doi:10.1371/journal.pntd.0004148.g007
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early apoptotic event driven by the parasite on HL–1 cells. This effect was also reflected by -in
vivo experiments showing that Lgals1-/- mice intraperitoneally inoculated with T. cruzi Tula-
huén strain had higher parasitemia and lower survival rates than WT animals. Moreover, our
data show that T. cruzi infection can reprogram the glycophenotype of cardiac cells toward a
Gal–1 resistant profile, thus highlighting a potential parasite strategy to avoid the beneficial
inhibitory effects of Gal–1 in host cells. This Gal–1 restrictive glycophenotype is similar to that
observed in T helper (Th)-2 polarized cells [23], in M2-type microglia [51] and in tumor-asso-
ciated endothelial cells [25].

Regarding the mechanisms underlying the effects of Gal–1 on cardiac cells, it is well known
that galectins can act by blocking or stimulating pathogen attachment and infection through
binding to host or microbial glycans, or by interfering with molecular interactions required for
microbial entry to host cells [42]. In this study, we found, both by flow cytometry and fluores-
cence staining, that Gal–1 did not bind to T. cruzi surface glycans from any of the parasite
strains analyzed. Therefore, we hypothesized that Gal–1 released via an autocrine or paracrine
pathway might recognize specific glycans on the surface of HL–1 cardiac cells that are neces-
sary for T. cruzi attachment and/or invasion. However, Gal–1 could also act directly facilitating
cytokine release by cardiac cells [42].

To determine whether cardiac cells are a major source of Gal–1 production, we evaluated
Gal–1 mRNA and protein expression in infected HL–1 cells. Even tough, T. cruzi infection did
not induce Gal–1 expression in HL–1 cells, we observed increased amount of this lectin in cul-
ture media of infected cells, probably due to cellular damage generated by parasite release. This
result might explain the up-regulation of Gal–1 in heart tissue from patients with chronic Cha-
gas cardiomyopathy as reported by Giordanengo et al. [27]. In addition, we found that Gal–1

Fig 8. Histopathological findings in Lgals1-/- andWTmice at 19 dpi with T. cruzi Tulahuén strain. A) Microphotographs representative of heart and
skeletal muscle histopathological abnormalities (H&E). Parasite density (B) and Inflammation Index (C) were calculated as indicated in the Methods section.
Bars represent mean ± SEM of 5–7 mice per group. Statistical analysis was performed using Mann-Whitney U test. *p<0.05. F: Female mice; M: Male mice.

doi:10.1371/journal.pntd.0004148.g008
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levels were greater in sera from patients with chronic Chagas disease, irrespective of cardiac
alterations. Interestingly, T. cruzi infection up-regulated Gal–1 expression and secretion in dif-
ferent immune cells, including B cells and macrophages [28, 52].

In vivo studies confirmed the protective effect of Gal–1 on T. cruzi infection observed in the
in vitro assays. Lgals1-/- mice infected with T. cruzi Tulahuén strain showed higher parasitemia
together with lower survival rate, which was more evident in female than male animals. In
addition, histopathological analysis revealed a major number of parasites in the heart of those
animals, but surprisingly Lgals1-/- mice showed a slightly decrease in the inflammatory
response as compared to their WT counterparts. Based on previous reports [53], we would
expect that a strong inflammatory response will be accompanied by an increased parasite bur-
den in the heart or skeletal muscle of Lgals1-/- mice. However, similar findings were reported in
mice with genetic or acquired deficiencies of the immune system [35, 54, 55], supporting the
notion that the lower inflammation observed in hearts of Lgals1-/- mice may be the result of a
differential regulation of the immune responses in these knock-out animals.

In addition, differences observed between genders are not unexpected; the immune
response to some microorganisms and the subsequent clinical outcome of the infection are
linked to host hormonal pathways [56, 57]. Interestingly, substantial disparities in male and
female individuals have been clearly documented in T. cruzi infection [58, 59]. Our results
highlight the role of Gal–1 in the complex parasite-driven immune-endocrine networks since
important discrepancies in parasitemia and survival rates were observed in male and female
animals lacking the Lgals1 gene. Moreover, in a very recent study, Poncini and colleagues dem-
onstrated that Lgals1-/- mice infected by intradermoplantar inoculation with T. cruzi RA strain,
displayed lower mortality and parasite burden in muscle tissue than WTmice [60]. The dis-
crepancy with our data could be associated with different administration routes as the presence
of different phagocytic cell types at sites of inoculation and the local immune response trig-
gered by T. cruzi infection may dictate not only changes in parasite load but also susceptibility
or resistance to infection [61–63]. Altogether, these findings suggest that galectin-glycan inter-
actions may influence the outcome of the infection depending on the strain of the parasite
(Tulahuén, Brazil or RA), the route of infection (intraperitoneal or intradermoplantar inocula-
tion) and the subtle differences in the immune responses triggered by each T. cruzi strain [61–
63]. Furthermore, similar strain-specific divergences have been previously reported by Toscano
et al., showing that endogenous Gal–3 can differentially regulate the outcome of experimental
malaria, when three distinct strains of rodent malaria parasites, Plasmodium yoelii 17XNL,
Plasmodium berghei ANKA and Plasmodium chabaudi AS were inoculated in mice lacking
Gal–3 [64].

Finally, our data suggest that the parasite may display evasive mechanisms to counteract the
effect of Gal–1. In fact, T. cruzi infection altered the glycophenotype and decreased the avail-
ability of galectin-binding sites on cardiac cells as evidenced by increased α2-6-sialylation
which prevented Gal–1 recognition of poly-LacNAc structures. Changes in the glycophenotype
were not as evident in HL–1 cells infected with parasites belonging to the Brazil strain, which
could explain, at least in part, the differential infectivity of this strain compared with the Tula-
huén strain. In line with these findings, Vray et al. described that changes in glycosylation
structures of infected dendritic cells rendered a profile that was more reactive with Gal–3,
affecting not only the infectivity, but also the migratory capacity of these cells in the context of
Chagas disease [65]. In this regard, it has been demonstrated that electric communication in
the heart is modulated by regulated glycosylation, particularly by sialylation of the cardiac volt-
age-gated Na+ channels (Nav) and Kv [66–68]. Our results suggest that parasite-induced
remodeling of the host cell glycome might contribute to mechanical and functional alterations
in the heart of infected host.
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In conclusion, our findings demonstrate that: a) Gal–1 inhibits T. cruzi infection of cardiac
cells, and b) parasite infection alters the surface glycophenotype of cardiac cells, restricting
Gal–1 and possibly limiting its inhibitory activity. Importantly, these effects were dependent
on multiple parameters including parasite inoculum and strain, route of entry of the parasite
and gender of the host. Thus, modulation of Gal-1-glycan interactions in cardiac cells may
influence parasite-induced heart injury. Further studies are warranted to clarify the potential
clinical relevance of our findings.

Supporting Information
S1 Fig. Infection of HL–1 cells wild-type and transfected with pcDNA 3.1 plasmid (mock).
Cells infected with trypomastigotes of Tulahuén strain, were fixed and stained after 2 dpi with
an anti-T. cruzimouse serum. The percentage of infected cells was determined by counting an
average of 3,500 cells in each slide on 4 distinct coverslips in randomly selected fields. Results
are expressed as mean ± SEM. Statistical analysis was performed using Student´s t test.
(TIF)

S2 Fig. Schematic representation of N- and O-glycans and lectin-binding sites.MAL II:
Maackia amurensis agglutinin II; SNA: Sambucus nigra aglutinin¸ LEL: Lycopersicon esculen-
tum agglutinin; PHA-L: Phytohemagglutinin-L; HPA:Helix pomatia agglutinin; Gal–1: galec-
tin–1.
(TIF)

S3 Fig. HL–1 apoptosis induced by different rGal–1 concentrations.HL–1 cells were incu-
bated with rGal–1 for 18 h, staining with FITC-Annexin-V and processed by flow cytometry.
Results expressed as mean ± SEM, are representative of 2 independent experiments. Statistical
analysis was performed by using ANOVA one-way followed by Tukey. ��p<0.01.
(TIF)

S4 Fig. Parasitemia levels (A) and survival rate (B) of WT and Lgals1-/- mice infected with
T. cruzi Brazil strain, via the intraperitoneal route. For parasitemia levels, each point repre-
sents the mean ± SEM of 5–15 animals per group, and statistical analysis was performed using
Mann-Whitney U test. �p<0.05 vs. WT mice; $$p<0.01 vs. male mice. For survival rate, statisti-
cal analysis was achieved with Log-rank test.
(TIF)

S1 Table. Glycan-binding specificity of the lectins used for glycophenotyping. 1Concentra-
tion of the lectins used.
(DOCX)

S2 Table. Groups of mice were injected i.p. with 2,500 bloodstream trypomastigotes of the
Tulahuén or Brazil strains. aParasitemia is shown as median (rank) of parasites/ml of blood
from 5 to 15 mice per group of each gender, at the peak. bSurvival time is shown as
means ± SEM. ND: not detectable.
(DOCX)
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